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PROJECT SUMMARY

The 1986 State-of-Union address by President Reagan clearly stated the need for a
new "Orient Express" (hypersonic transport), and laid the foundation for a National
Aero-Space Plane (NASP) technology development program. Due to a lack of flight
data and limited experimental capabilities, the development of NASP propulsion tech-
nology (as well as the airframe design) program, in its first three phases, has to heavily
rely upon the CFD support provided. Thus, a keen need exists for developing accurate,
reliable and computationaUy efficient numerical schemes for predicting large angle-of-
attack, supersonic/hypersonic external flows over realistic (3-D) NASP configurations.
In this SBIR Phase II study a new three-dimensional fully iterative PNS scheme has
been developed to study hypersonic external flows over 3-D lifting configurations. In
addition, it has been demonstrated that this baseline PNS scheme can also be extended

to predict 2-D/axisymmetric supersonic/hypersonic internal flows. This work was done
by VRA, Inc., for the NASA Lewis Research Center under contract number
NAS3-25450. Dr. Clark H. Lewis was the principal investigator for this work, and Mr.
Tom Benson of NASA Lewis Research Center served as the contract monitor.

The three-dimensional PNS scheme developed under this SBIR Phase II effort is in-

herently stable in the subsonic as well as the supersonic flow regions and, thus, does not
require any sublayer approximation. Furthermore, it has the capability of treating
perfect-gas, equilibrium-air and nonequilibrium-air gas models in a unified manner. A
fourth-order crossflow and a second-order streamwise smoothing approach are used to

damp the solution oscillations. In addition, a pseudo-unsteady approach is used to
dramatically improve the solution efficiency without compromising the solution accu-
racy. The scheme is formulated in terms of a general curvilinear coordinate system, and
is capable of treating cylindrical, parabolic, body-normal, a modified body-normal and
elliptic grid-generation algorithms for highly nonaxisymmetric configurations. A new
fully implicit and crossflow-coupled shock-fitting approach has also been developed.
With this solution approach the shock is fully coupled in the crossflow direction, while
within the shock-layer the solution is obtained using a new predictor-corrector solution
scheme which can treat strong crossflow solution-coupling effects. The resulting overall

computing times are of the order of the noniterative PNS schemes using Approximate
Factorization, because apart from being numerically efficient the present solution
scheme allows much larger marching steps to be taken. In addition to these math-
ematical and numerical developments, significant effort was also spent in developing a
vectorization strategy for this 3-D PNS scheme. Furthermore, in this SBIR Phase II
study, it has also been shown that this baseline PNS scheme for external flows can be
extended to study 2-D/axisymmetric supersonic/hypersonic internal flows.

Six cases were considered to test this new PNS scheme for external and internal

hypersonic flows. The first three test cases were for the 5-dog angle-of-attack flow over
a 3-D lifting configuration at Mach 20 and 125 kft altitude. Perfect-gas, equilibrium-air
and nonequilibrium-air gas models were used to study these cases, and it was observed
that the type of gas model used had a significant influence on the flowfield predictions.
The next three test cases considered 2-D supersonic/hypersonic internal flows through
different channel configurations. In each of these internal flow cases, comparisons were
also made with the predictions obtained using classical 2-D inviscid theory, and the
agreement between inviscid and viscous predictions was found to be excellent. In gen-
eral, the results of these numerical tests were very encouraging and substantiated the
accuracy, efficiency and stability claims of the PNS scheme developed under this Phase
II effort.
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I. INTRODUCTION

1.1. Introduction and Background

Over the past several years the area of aerothermodynamic analysis of hypersonic

reentry vehicles has seen a significant change in direction in concept as well as technol-

ogy development. The main motivation for such a change has not only come from

practical needs, but also because the overall field of computational fluid

dynamics/chemistry has seen some significant new developments and improvements.

All these developments in the basic aerothermodynamic technology, as well as in the

applied fields, have been greatly influenced by the tremendous improvements in the ex-

isting computational facilities and computer technology. As a natural consequence of

an improved understanding of the physics and the corresponding improvements in the

computational technology, vehicle concepts which were improbable some years ago can

now be developed at much lower risk levels. The bulk of these space-technology devel-

opments rely (either partially or in full) upon the technology development efforts of

NASA. From the general trend of these technology developments, it is clear that NASA

is being relied upon to not only help in the conceptual developments but also in the de-

velopment of the computational capabilities to effectively study the related

aerothermodynamic and aerothermochemical problems. A detailed overview of NASA's

present aerothermodynamic program was recently published by Graves and Hunt (1985),

and the corresponding research and technology issues were outlined by Howe (1985).

The 1986 State-of-Union address by President Reagan clearly stated the need for a

new "Orient Express" (hypersonic transport), and laid the foundation for a National

Aero-Space Plane (NASP) technology development program. The NASP technology

effort involves major developments in almost all areas of hypersonic transport, leading

to an experimental vehicle in the near future. However, the development of a reliable

propulsion system and an accurate prediction of the related 3-D inlet approach flowfield,

is one of the most critical tasks. Due to a lack of flight data and limited experimental

capabilities, the development of NASP propulsion technology (as well as the airframe

design) program, in its first three phases, has to heavily rely upon the CFD support
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provided. Our involvement with NASP technology development (airframe as well as

propulsion) contractors has shown a keen need for accurate, reliable and computa-

tionally efficient numerical schemes for predicting large angle-of-attack,

supersonic/hypersonic external flows over realistic (3-D) NASP configurations.

The typical flight envelope for NASP-type vehicles extends over a wide range of low

to high flight altitudes. At low altitudes the surrounding gas chemistry can be accurately

modeled using a perfect-gas model. However, under high-altitude (low-density) condi-

tions the characteristic reaction times are of the order of the characteristic flow times,

and the reactions between the various gas species become important. Under such high-

Mach-number and low-Reynolds-number conditions the air can no longer be accurately

modeled as a perfect gas, and one needs to account for

ionization/dissociation/recombination of the various gas species involved and their im-

pact on the overall mixture properties. Under such conditions the thermochemical na-

ture of the flow can be modeled by assuming either (a) chemical nonequilibrium

(finite-rate chemically-reacting flow) or (b) local chemical equilibrium. Typically, the

high-altitude regimes (35 km and above) are more accurately modeled as finite-rate

chemically-reacting air, whereas the moderate altitude regimes (15-30 km) are close to

equilibrium chemically-reacting air. (Of course, these are rough limits and may vary

with the vehicle configuration involved.)

Apart from the importance of flow chemistry, the complex three-dimensional nature

of NASP-type vehicles is also a very important consideration. In short, the need exists

to develop three-dimensional numerical capabilities for predicting the perfect-gas,

equilibrium-air and nonequilibrium-air flowfields around complex 3-D configurations.

Since there are little flight data and no ground-testing facilities available to properly

simulate the type of flight conditions being considered, the development and operational

analysis of the aforementioned configurations will benefit significantly from any such

three-dimensional numerical capabilities. Furthermore, because these numerical

schemes are to be also used in the preliminary as well as advanced design stages, they

need to be fast, efficient, robust and accurate. It is also worth noting that for most of

the NASP-related configurations under study, most of the compression required for the

afterbody propulsion system occurs over the forebody region. Thus, for the type of

problems being addressed, an accurate prediction of the external flow over the vehicle

forebody region is also very important for an accurate analysis of the associated

hypersonic-propulsion systems.
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In the preceding Phase I effort we have successfully demonstrated the development

of a new three-dimensional PNS scheme for complex 3-D configurations. This PNS

scheme is based on a completely new formulation, and (unlike the classical PNS

schemes) this new scheme is unconditionally time-like in the subsonic as well as the

supersonic flow regions. We have applied this scheme to realistic high-speed flows over

simplified (axisymmetric or 2-D) models of the NASP-related inlet configurations

(Lewis, 1986, and White, 1986). We have also analyzed these inlets under small angle-

of-attack (5 deg or less) conditions, and have covered a Mach range of 3 to 25 with the

same scheme along with various gas models. With these unique characteristics, our PNS

scheme is ideally suited for modification to study supersonic/hypersonic external flows

over complex NASP-like geometries.

The Phase I work was, however, of a exploratory nature (representing a 'demon-

stration of concept') and needed to be further extended to study more realistic condi-

tions. In this follow-on Phase II effort we successfully accomplished the following

following tasks as proposed; viz.,

(i) Extension to 3-D nonequilibrium-air flows.

(ii) Further development and improvement of the solution scheme.

(iii) Grid-generation and related considerations.

(iv) Application to realistic NASP-type configurations.

(v) Extensions to 2-D/axisymmetric internal flows.

(vi) Reports, Documents and Deliverables.

1.2. Objectives and Scope of the Phase II Effort

The following six tasks were proposed and accomplished in this Phase II effort.

(1) Extend the three-dimensional PNS scheme of Phase I to study nonequilibrium-air

flows around complex three-dimensional configurations representative of realistic

NASP configuration concepts. Furthermore, study and incorporate various ways

of reducing computing times without sacrificing solution accuracy.

(2) Further develop and extend the 3-D PNS scheme developed in Phase I to improve

solution accuracy and efficiency. Consider different ways of minimizing crossflow

smoothing effects and conduct cross flow grid-refinement studies. Furthermore,
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restructure the solution scheme to make it more vectorizable and, thus, substan-

tially reduce overall computing times.

(3) Improve the grid-generation scheme developed under the Phase I effort to handle

more complicated geometry shapes such as wings, fins, etc. Improve the shock-

prediction scheme of Phase I to reduce possible grid-twisting effects. Furthermore,

develop an automated parabolic grid-generation approach for simpler geometries

and minimize user interaction. Study the parabolic, elliptic, hyperbolic and hybrid

grid-generation schemes, evaluate their usage potential and choose the best

option(s).

(4) Apply the final three-dimensional PNS scheme to realistic NASP-type geometries

under some typical flight conditions, and evaluate the accuracy and efficiency

characteristics of the solution scheme. Study the effects of perfect-gas,

equilibrium-air and nonequilibrium-air gas models on the flowfield. Also evaluate

the grid-generation capabilities of the final 3-D PNS scheme.

(5) Develop a 2-D/axisymmetric PNS scheme for internal flows with perfect-gas,

equilibrium-air and nonequilibrium-air gas models, by extending the axisymmetric

PNS scheme of Bhutta and Lewis (1985a,b). Furthermore, run some simple test

cases to evaluate the accuracy and applicability of the proposed internal-flow PNS

scheme.

(6) Provide monthly progress reports during the Phase II effort. At the end of the

Phase II effort provide NASA with a final report covering the mathematical details

and results of the Phase II work.

The time schedule originally proposed for the completion of these Phase II tasks is

summarized below.
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Task

3-D, Neq. PNS code IX X X X X X X X X X X X

....................].....I.....I.....I.....
Improv. 3-D scheme IX X X X X X X X X X X X

....................l.....I.....I.....I.....
Adv. grid gener. [ IX X X X X X

....................I...........J.....J.....
Applic. to NASP I IX X X

....................I...........l.....I.....
2-D/Axi. int. flow I IX X X X X X

....................I...........I.....I.....
Report/doc., deliv, l

I Time in months from May 1988 to May 1990

I i-3 I 4-6 I 7-9 I 9-12113-15116-Is119-21122-24

I
I..... I.................
xxxl

I..... I..... I ..... [ .....
XXXXXXXXX[

I.....I.....I.....[.....
XXXXXXXXXXXX

a.....I.....I.....J.....
XXXXXXXXXXXX

I..... ]..... I..... I.....

IX X X X X X X XX X XX

Time schedule for tile Phase II effort

It should be noted that, although this Phase II work did represent a substantial ef-

fort, we accomplished all the task efforts in accordance with the time-schedule originally

proposed.
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II. GOVERNING EQUATIONS

2.1. Coordinate System

The coordinate system used for the present 3-D PNS scheme is a general curvilinear

coordinate system (_,4,,_3) shown in Fig. 1. Also, a body-fixed orthogonal (Cartesian)

coordinate system is chosen such that the origin of the Cartesian coordinate system is

at the tip of the blunt nose, and the x-axis is aligned with the axis of the body. The z-

axis is chosen as pointing downward such that the windward surface of the vehicle is on

the positive z-axis side (see Fig. 1). For convenience of notation we will also refer to the

x coordinate as xl, the y coordinate as x2 and the z coordinate as x3.

The _1 coordinate is along the body and is also the marching direction. The _2 co-

ordinate stretches from the body to the outer bow shock and lies in an axis-normal

plane. The 43 coordinate is measured in the crossflow direction from the windward pitch

plane. In general, it is assumed that the (x,y,z) space is uniquely transformable to the (

_, 42, 43) space through relations of the form

_j=_j (x,y,z) (2.1)

The uniqueness property is automatically satisfied as long as coordinate lines of the

same family do not cross, and it is important that the inverse transform of Eq. (2.1) is

definable. Suppose we denote the marching step at which we seek the solution as 'j + 1'

and the previous step as 'j', then the transformation of Eq. (2.1) is chosen such that the

physical (x,y,z) grid between 'j' and 'j + 1' steps transforms to a rectangle in the compu-

tational (4_, 42, 43) plane. The body surface corresponds to the _2= 0 curve, whereas the

outer bow shock corresponds to 4, = LMAX curve (LMAX being the number of grid

points in the _2 coordinate direction). In the windward pitch plane 43=0, and in the

leeward pitch plane 43= KMAX, where KMAX is the number of circumferential grid

points. Also, 4_= 0 at the j-th step and 4_= 1 at the j+ 1 step. Thus, at each marching

step, every grid cell in the x-y-z space between the j and the j + 1 step is transformed into

a unit cube in the 4t ,_2,_3 plane with A_--A42 = A43 = 1 (see Fig. 2).
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The transformation given by Eq. (2.1) is generally difficult to obtain. However, if

we assume for the present that the (x,y,z) grid at the j+ 1 step were known (subsequent

sections will discuss this in more detail), then the metric derivatives for the inverse

transform

xj=xj(_l, _2, _3) (2.2)

can be easily obtained numerically. At each grid point, this information about the

inverse-transform metrics is used to determine the transformation Jacobians (J) and the

metric derivatives (_J._i) for the transformation given by Eq. (2.1).

2.2. Governing Equations

The full Navier-Stokes equations governing the three-dimensional flow problem can

be written in a nondimensional form as (see Appendix A)

(ej-_gj),xj = P (2.3)

We choose our unknowns to be the density (p), the density-velocity products (pu,

pv and pw), the density-temperature product (pT) and the pressure (p). Thus our vector

of unknowns is

q = [p, pu, pv, pw, pT, p-I T (2.4)

Following the approach of Viviand (1974) and Peyret and Viviand (1975), it can be

shown that Eq. (2.3) can be transformed into the general curvilinear coordinate system

(_j), i.e.,

(fj --t;Sj).: i = h (2.5)

It is assumed that in the freestream the gas mixture behaves like a perfect gas, and the

nondimensionalization used in the above equations is shown in Appendix A.

Equation (2.5) is elliptic in _, _ and _3 directions.

pation effects in the _t direction, we can combine Eqs.

vectorial equation:

fJ,cj-_s _,¢2-_s 3.¢3= h

If we neglect the viscous dissi-

(2.5) and (2.3) in the following

(2.6)
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where the various components of this vectorial equations are defined in Appendix A.

These five equations representing the differential conservation of mass, momentum

and energy are mathematically closed by using the equation of state for the particular

gas model being used. This equation of state can be written in a general functional form

as

f(p,T,p) = 0 (2.7)

In the case of a perfect-gas model, the gas is assumed to be thermally as well as

calorically perfect. The equation of state for this case is written in the simple algebraic

form as

f(p,T,p) = _p - pT = 0 (2.8a)

In the case of an equilibrium-air gas model, the equation of state is written in the

following functional form.

f(p,T,p) = p - p(p,T) = 0 (2.8b)

Here the mixture density is a function of pressure and temperature and is available in the

form of a table.

In this case of finite-rate chemically reacting air, the gas is assumed to be a mixture

of perfect gases. The equation of state for such a reacting gas mixture is given by

f(p,T,p,Ci) = p - pT/_a = 0 (2.8c)

where _ is the nondimensional mixture molecular weight defined as

= yoon.i*/_ (2.9)

The mixture thermodynamic properties (such as _, k, Cp, _, Pr, etc.) require a know-

ledge of the species concentrations (C _) which are obtained from the species conserva-

tion equations. In the Cartesian coordinate system, the three-dimensional species

conservation equation can be written as (Bird et al., 1960)

pujC,_j + (Ji)J_j = ¢_i (2.10)
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These equations are first transformed into the (_1, _, _3) coordinate system, and the re-

suiting equations are parabolized by neglecting diffusion effects in the _1 and _3 di-

rections. The final parabolized species conservation equations are written as

[(pUj/J)Ci],¢ j --_ll-(_mkk/JPr)C,,j,¢ 2 = o_i (2.11)

where i= 1,2,3,...,(NS-1)

The system of equations represented by Eqs. (2.6), (2.7c) and (2.11) is closed through

a knowledge of the thermodynamic and transport properties of the mixture; namely, Cp

, k, _, p, Pr, and Le.
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III. NUMERICAL SOLUTION SCHEME

This chapter discusses in detail the procedure used to numerically solve the governing

3-D PNS equations for external flows.

3.1. Delta-Form of the Governing Equations

In this 'delta formulation' we solve for the changes in the flowfield variables from one

iteration to the next. The approach used is separately discussed for perfect-gas,

equilibrium-air and nonequilibrium-air gas models.

3.1.1. Perfect-Gas Model

Let us denote the iteration level by the index "n', so that the iteration at which we

seek the solution is represented by the superscript "n + 1', and the previous iteration (the

solution to which is known) is represented by the superscript 'n'. Thus, for the 'n+ 1'

iteration at the 'j + 1' marching step we can write Eq. (2.6) as

f j+l,n+l j+l,n+l ES j+l,n+l -----hJ+l,n+l
jdI _ES 2,_2 _ 3,_3

(3.1)

If we assume that the solution at the 'n+ 1' level is close to the solution at the n-th it-

eration, we can use a first-order Taylor series expansion around the previous iteration

to write

fj+l,n+l,_fj+l,n n Aqn+lj --_j +Aj •

j+l, n+l _+1, n n qn+ls 2 -_s +M 2 .A

S _+1'"+1 m- S_ +l'n "t" M_. Aq n+l

h j+l, n+l -_ h j+l, n + AN. Aqn+t

(3.2)

where

Aqn+l = qj+l, n+l _ qj+l. n (3.3)

and the matrices A0, M2 and M3 are called the jacobian matrices (not to be confused with

the transformation Jacobian matrix). The forms of these matrices are given in Appendix
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B. It should be noted that in evaluating the jacobian matrices and doing the Taylor se-

ries expansion around the n-th iteration, we only consider the flowfield variables as the

unknowns. Although the grid also changes from one iteration to the next, it is assumed

that these changes are small and do not contribute to the jacobian matrices.

Thus, we see that by expanding the solution around the n-th iteration and using

two-point streamwise differencing, we can write Eq. (3. I) as

(AI/A_, -Ao)" •Aq n+1 - [(A_-cM_) •zaq-n+I..i¢2- [(A_ -cM_) •_aq-n+,.j,_3 (3.4)

_ _hqJ+l, n = gi+l, n= - og[fj,_j- _s_,_ _s_._3

where 09 is an under-relaxation factor which has values between 0 and 1, and it has been

found to be very helpful in obtaining converged solutions for complex flowfields (Bhutta

and Lewis, 1988a-b and 1989a-b). Typically, we use co<0.5 for complicated flowfield

calculations, and o9= I for simple flowfield calculations.

Equation (3.1) is elliptic in the _2 and _3 directions so that for second-order accuracy

we use central-differenced approximations for all _2 and _3 derivatives. However, the use

of central-differenced schemes is typically associated with solution oscillations (Bhutta

and Lewis, 1985a-d; Kaul and Chaussee, 1983; Shanks et al., 1979; and Schiffand Steger,

1979). This oscillatory behavior becomes more pronounced if the local velocities are

small, so that the diagonal terms of the jacobian matrices also become relatively small.

In order to damp these solution oscillations, it is necessary to add some additional

higher-order diffusion terms to Eq. (3.1). In our earlier work (Bhutta and Lewis,

1985a-d, and Bhutta et al., 1985a) we had developed a second-order accurate fully im-

plicit smoothing approach which is accurate and simple to use. In the present formu-

lation we have extended this smoothing approach to a fourth-order accuracy. It is

shown in Appendix C that by extending the basic approach of Bhutta and Lewis

(1985a-d) and Bhutta et al. (1985), we can write Eq. (3.1) as

f j+l. n+l $3, )j+l, n+l hi+l, n+lJ._j =_(s2,_2+ _3 + + rq(q)(A_2)4[16 + rr2(q)(A_3)4/16 (3.5)

where the form of the vectors _ 1 and n _ is chosen as

¢94q aaq

n_(q)= - (AI/A_I- Ao).d_"-'T2- [(A2-_M2) •a_--T],_2-[(A3-_M3)

a_q

n2(q)= - (AI/A_I- Ao)._ - [(A2-_M2) •a_-T3'_
[(A3_M3)

c94q

• 0_'---_-]'_3(3'6a)

04q
• _ ],¢3(3.6b)

0¢3
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It has been shown in Appendix C that (to fourth-order accuracy) we can rewrite Eq.

(3.5) in terms of an intermediate solution X j÷_ as

s.(., j+l_][fj(gJ+I)],_j = _[s2(xi+l)],_2 + [ o,^ ) ,¢_+ h(x j+l) + O(A_2) 4 + O(A_3) 4 (3.7)

The actual solution that we seek at the j + 1 step is related to this intermediate solution

by

(Zl) j+t = Xj+l -- Z, _3_3_3_3A_] 16 (3.8a)

416qi+1= (X1)i+1_ (Xl),¢2¢2¢2¢2A_21 (3.8b)

An important advantage of this formulation is that the crossflow smoothing effects [Eqs.

(3.8a)1 and the axis-normal smoothing effects [Eqs. (3.8b)] can be separately identified.

Furthermore, the way these smoothing operations affect the individual flowfield vari-

ables can also be clearly seen. Being able to separate these smoothing effects, permits

us to further enhance its accuracy by restricting the axis-normal smoothing effects to

only the pressure field. Thus, Eqs. (3.8) are rewritten as

4
(X1)j+l = Xj+l - Z, _3_3_3_3A_3[16 (3.9a)

qj+l = (Xl)J+l -- [0,0,0,0,0,()C16). ¢2¢2¢_¢2]TA_/16 (3.9b)

where 2C1_is the sixth element of the vector g_ • In this manner, the axis-normal

smoothing effects do not degrade the wall heat-transfer and skin-friction predictions.

In our PNS scheme, first-order backward-differenced approximations are used to

approximate the streamwise convective flux derivatives (fl.cl). It has been shown by

Bhutta and Lewis (1985a-d) and Bhutta et al. (1985a) that for the iterative process of

Eq. (3.1), this first-order streamwise differencing is conservative in the limit of conver-

gence. This is not only important from a storage point of view, but it also gives the

present scheme a significantly improved capability for treating strong compression dis-

continuities. However, such a first-order accurate finite-difference representation has

no inherent mechanism to check or suppress the onset of streamwise numerical oscil-

lations. The numerical filtering provided by this first-order backward-differenced ap-

proximation is proportional to the streamwise stepsize. As the streamwise step size

decreases, the numerics becomes more and more sensitive to the high frequency (small

wave length) streamwise oscillations. In order to suppress such streamwise oscillations

and, thus, enhance the small step-size capability of the our PNS scheme, small amounts
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of second-order streamwise numerical dissipation effects are added to the governing

equations in order to damp and control the growth of any streamwise solution oscil-

lation. This second-order streamwise damping approach is discussed in detail in Ap-

pendix D. However, briefly speaking, this approach uses the basic PNS approximation

that for such parabolic flows the second-order streamwise derivatives are much smaller

0__L_)than the first-order streamwise derivatives (_ < < . For such a case, suppose

we want to suppress a numerical oscillation (of constant vector amplitude) in the

streamwise convective flux derivatives (f_._t) • It can be shown that for a constant

stepsize case (see Appendix D) the vector amplitude of such an oscillation can be ap-
I

proximated as -_--f_.¢l_tA_ . Based on this simple damping model, we choose the

streamwise diffusion effects to be of the form

fl,_, _ (fl,¢_)b -- cofl,h_A_l (3.10)

where the subscript 'b' represents first-order backward-differenced approximation. The

appropriate values of co are between 0 and 1, and its form is chosen such that co-*l as

A_t-*0 and co-*0 when A_ is adequately large. Thus, the numerical accuracy of a large

step-size solution is not compromised.

For this perfect-gas model the mixture viscosity was obtained using the Sutherland

formula (White, 1974), and the specific-heat ratio was assumed to be a constant (1.4 for

air). The mixture Prandtl number was also assumed fixed (0.72 for air), and the mixture

thermal conductivity was obtained from the definition of mixture Prandtl number.

3.1.2. Equilibrium-Air Gas Model

The numerical scheme used for equilibrium-air flows is essentially the same as for the

case perfect-gas case, except that the mixture thermodynamic and transport properties

are provided in the form of a table. The dependant variables for these tabular data are

chosen to be pressure and temperature. The thermodynamic properties involve the

mixture enthalpy, h(p,T), and mixture density, p(p,T), data and are based on the tabular

data of Miner et al. (1971). The transport properties involve the mixture viscosity data,

#(p,T), the mixture thermal conductivity data, k(p,T), and the Prandtl number data,

Pr(p,T). The viscosity and thermal conductivity data are based on the data developed

by Peng and Pindroh (1962). The Prandtl number data were developed using this

viscosity and thermal conductivity data and the mixture specific-heat data obtained by

numerically differentiating the aforementioned enthalpy data of Miner et al. (1971). The

equilibrium-air thermodynamic and transport property table used in this study covers
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the temperature range of 10-15000 Kelvin and the pressure range of 0.0025-15.849 at-

mospheres. The pressure range of the thermodynamic property data of Miner et al.

(1971) is from 0.000025 atmospheres to 39810.72 atmospheres; however, the reduced

limits of the current table are due to transport property data of Peng and Pindroh (1962).

The original transport property data of Peng and Pindroh (1962) are in terms of a table

of density and temperature. When these data were rearranged in terms of pressure and

temperature, it was observed that outside the limits of 0.0025-15.849 atmospheres, the

available data did not completely cover the temperature range of 10-15000 Kelvin. Since

a direct extrapolation of these data in terms of pressures may not be accurate, the cur-

rent table was limited to this pressure and temperature range. It should be noted that

this range adequately covers most of the fight regime in which the equilibrium-air effects

may be important.

3.1.3. Nonequilibrium-Air Gas Model

The overall nonequilibrium PNS problem represented by Eqs. (2.6), (2.7c) and (2.11)

is well-posed. However, the number of unknowns involved is very large (i.e., p, pu, pv,

pw, pT, p, C'-p,k, _, -_, Pr, C _, C 5, C 3,...,CNs). A simultaneous solution of these quan-

tities would be beyond the practical limits of present computational facilities, except

perhaps, future supercomputers. Even so, the solution of a practical problem would be

very expensive and time consuming. However, for many practical problems, the coupl-

ing between the fluid mechanics (p, pu, pv, pw, pT and p) and the chemistry (Cp, _, k,

_, Pr, C z, C 2,...,CNs) is not very strong. With this idea in the mind, we can decouple the

overall nonequilibrium PNS problem into (a) a fluid mechanics problem and (b) a

chemistry problem.

The fluid mechanics problem is represented by Eqs. (2.6) and (2.7c) where the chem-

istry is assumed as known. The chemistry problem involves the solution of Eqs. (2.11)

and the determination of the transport properties of the mixture, where the fluid me-

chanics are assumed as known. The coupling between the fluid mechanics and the

chemistry is treated in an iterative manner. Thus, for each iteration at a given marching

step we first solve the fluid mechanics problem, and then we solve the chemistry problem

based on the solution to the fluid mechanics problem. With this updated chemistry, the

fluid mechanics problem is solved once again, and the cycle is repeated until acceptable

convergence is achieved. In this manner, in the limit of convergence, we have a fully

iterated solution which completely accounts for the coupling between the fluid mechan-

ics and the chemistry of the flowfield.
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(a) Solution of the Fluid Mechanics Problem : In general, the solution of the fluid me-

chanics problem is very similar to the solution approach used for perfect-gas and

equilibrium-air flows, except for some additional nonequilibrium terms appearing in the

energy equation. As shown in Appendix A, these additional nonequilibrium terms are

appropriately included in the definition of h and the corresponding jacobian matrix A 0

[Eqs. (3.1) and (3.2)1.

(b) Solution of the Chemistry Problem : Using the solution of the fluid mechanics prob-

lem [Eqs. (3.4) and (3.8)], first the transport properties of the seven-species air system

are determined. This information is then used to evaluate the production rates (_i) for

the various species involved. For the chemistry problem, we use a seven species (O,

O 2, N, N 2, NO, NO +, and e-) gas model to represent the finite-rate chemically-reacting

air mixture. The thermodynamic properties of these species are obtained from the

thermodynamic data of Browne (1962a-c). The diffusion model used in this seven-

species model is limited to binary diffusion, with the binary diffusion coefficient for each

gas species defined by a Lewis number of 1.4.

The gas-phase reactions considered in this seven-species air system correspond to the

model used by Blottner et al. (1971) and Miner and Lewis (1975), and use the reaction-

rate data proposed by Bortner (1963). The viscosities of O, O 2, N, N 2, NO, NO ÷, and

e- are computed from the curve-fit relations used by Blottner et al. (1971), and the

thermal conductivities of these species are estimated with the Eucken semi-empirical

formula. After the viscosities and thermal conductivities of the individual species have

been estimated, the viscosity and thermal conductivity of the mixture are calculated us-

ing Wilke's semi-empirical relations. A complete description of the reactions, reactions

rates and viscosity data for this seven-species nonequilibrium-air gas model is given in

Tables 1 thru 3.

In treating the species conservation equations in such a decoupled manner, special

consideration needs to be given to the treatment of the species production terms. It is

known that a full linearization of these production terms results in an unstable solution

under typical flight conditions. For this reason it is necessary to split the overall pro-

duction term into two parts (Blottner et al., 1971, and Miner and Lewis, 1975).

(3.11)
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where the respective forms of _0 and _ have been derived in Appendix E, and are based

on the work of Blottner et al. (1971) and Miner and Lewis (1975). As was noted by

Blottner et al. (1971) (and it has also been our experience), writing the species pro-

duction terms in terms of species concentrations adds to the stability of the solution.

In the subsequent numerical formulation of the related species conservation equations,

the _ contribution acts as a source term in the right-hand side, while the _ term ap-

pears as a diagonal contribution on the implicit (left-hand) side. This separation bal-

ances both sides of the equation, and results in a stable solution. Both these

components of the species production term are functions of the species concentrations,

local density and the local temperature. The calculations of these production terms in-

volves several exponential and logarithmic operations to be performed for each species.

Typically, the number of these operations increases at a rate much greater than the

square of the total number of species. For a complex chemical system where there is a

large number of species involved, a substantial part of the total computing time can

easily be spent in doing these calculations.

In our nonequilibrium teflon-air PNS scheme we took a new approach of partially

linearizing the production terms, where the production terms are still separated into

left-hand side and a right-hand side contributions. However, these components are then

linearized based on the mixture density and temperature information from the previous

marching step. On the other hand, the species concentrations appearing in these pro-

duction terms are only linearized around the previous iteration.

•o,j+1.n+l "o, _j Ci+1,n)(wi) = to i _P, T j, (3.12a)

(_)j+_,_+t • _,j cj+_.,_= Col(p, TJ, _i , (3.12b)

Since this linearization is only partial and is done on quantities which indeed change very

slowly (especially in the PNS afterbody region), the errors introduced are very small.

However, the computing-time efficiency achieved is substantial. Again, it should be

noted that in this approach solution accuracy is maintained, because the linearization

involves terms which do change very slowly (such as density and temperature) from one

step to the other, and than again the linearization is only partial.

With the species production terms written as in Eqs. (3.11) and (3.12), using a two-

point backward-difference formula for the _1 derivative and central-differenced approxi-

mations for the _2 and _3 derivatives, we can write the parabolized species conservation

equations [Eq. (3.13)] in the following scalar tridiagonal form.
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ak,¢(Ci)k,¢_ 1 4- bk,e(Ci)k,¢-F Ck,¢(Ci)k,¢+ 1 + [(pU3 ]J)Ci]d3 = dk*¢ (3.13)

where the coefficients a, b, c and d' are functions of the flowfield variables, the transport

properties of the gas mixture. The species production terms are included in the coeffi-

cients b and d'.

3.2. Predictor-Corrector Solution Scheme

Under large angle of attack conditions strong crossflow separated regions may de-

velop on the leeward side. Under these conditions, solution coupling in the crossflow

direction is very important. If these coupling effects are not properly considered during

the iterative solution, they can cause severe convergence difficulties. In order to address

that problem of crossflow coupling we have developed a new predictor-corrector ap-

proach. This predictor-corrector scheme is divided into three different parts; namely, (a)

the predictor step, (b) the shock solution and (c) the corrector step. The following dis-

cussion summarizes the details of these solution steps.

Using a two-point streamwise differencing and central-differenced approximations in

the _2 and _a directions, the final differenced equations corresponding to Eq. (3.4) can

be written in the following block-pentadiagonal form.

I'D • AXk_I,¢'] + FA oAxk,¢_ 1] 4- ['B • AXk,¢] -t- FC OA_k,¢+l] + ['E oAXk+I,¢]

(3.13)

_h]i+_,n gj+1,n= - [f),_j-ss2,_2 -_s3,_3 =

3.2.1. Predictor Step

In the predictor step we first neglect the implicit crossflow coupling effects in favor

of the body-normal coupling effects. With this assumption the governing equations for

the predictor step become

[A. AZ_,e_,] * = gn+ ['B.Axk,¢'] + l'C°AJck,/+l] (3.14)

These equations are inverted from the body to the shock to develop a recursive re-

lationship between the solution at each successive grid point in the body-normal direc-

tion. These recursive relations have the form
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* n
Axk,e = --Rk,e. Ax_,¢+l + rk, e where k= 1,..,KMAX

(3.15)
_'= 1,..,LMAX- 1

3.2.2. Crossflow-Coupled Shock Solution

The crossflow-coupled shock-fitting scheme is discussed in detail in the following

section. Briefy speaking, using the recursive relation from the predictor step at

_'= (LMAX-1) location, the Rankine-Hugoniot shock-crossing equations are solved to

obtain the solution at the shock. This shock solution is than used to solve the corrector

step.

3.2.3. Corrector Step

Just like the shock-point solution, the solution in the corrector step uses the recursive

relations from the predictor step to eliminate the (k,/'-l) contributions in the difference

molecule. Then using the fact that the solution at the (k,_'+ 1) point is known, one can

reduce the Eqs. (3.13) to only a coupled system in the crossflow direction. This cross-

flow corrector solution can be written as

D • AXk_I, e + (B - ARk,e) • AXk,e + E • AXk+l,e

~ (gn A n= - • r,k.e_l) -- C • AXk,e+l

(3.16)

where it is assumed that

* * n
AX ~ AX AXk,t--! = k,e-! ---- -- Rk,e-I * k,e + r k,_O_l

"_ Rk,e-i AX k,e + r n= _ * k,e-I

(3.17)

This implicit crossflow solution is obtained using plane-of-symmetry boundary condi-

tions applied in the windward and leeward pitch planes. In this way the flowfield sol-

ution is marched from the shock to the body.
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3.3. Pseudo-Unsteady Solution Algorithm

It should be noted that the right-hand side of Eq. (3.4) as well as the right-hand side

of Eq. (3.13) is the governing differential equation corresponding to the fluid mechanics

problem written at the n-th iteration level and goes to zero in the limit of convergence.

As discussed by Bhutta and Lewis (1985a-d), under these conditions the exact form of

the left-hand implicit terms is of no great consequence except that it affects the conver-

gence path of the solution. With this idea in mind we do not update the Jacobian ma-

trices beyond the first iteration; i.e., we assume that

A - AV
(3.18)

M_ M_--'

Such a pseudo-unsteady approach has been discussed in depth by Bhutta and Lewis

(1985a-d) and interested readers are referred to these references for further details. Using

this pseudo unsteady approach we obtain the final differenced equations as

(AI/A_1 - Ao) n=l . AZ n+l + [(A2 -eM2) n=l • Axn+l],_2 + [(A3 -eMa) n=l . Axn+l"l ,3

(3.19)

= - [fj.,j -*s2.¢2 --*S3,* 3 -hi j+l'n = gj+l, n

The converged limit of Eqs. (3.19) is the same as the converged limit of Eqs. (3.4).

However, Eqs. (3.19) is considerably more efficient and faster to solve. With the present

pseudo-unsteady approach the time for each iteration after the first iteration (n = 2,3,...)

is only 10-15% of the time taken by the first iteration.

3.4. Boundary Conditions

The problem represented by the governing PNS equations is a split-boundary-value

problem; i.e., the equations are hyperbolic-parabolic in the _1 direction and elliptic in the

_2 and _3 directions. Thus, in order to solve the problem completely we need initial

conditions to be specified at the start of the marching procedure, boundary conditions

to be specified at the wall and at the outer bow shock and boundary conditions to be

specified in the windward and leeward pitch planes (for flows with a pitch-plane of

symmetry).
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3.4.1. Initial Conditions

The initial conditions to start the perfect-gas and equilibrium-air PNS solutions were

obtained from a VSL blunt-body solution scheme for perfect-gas and equilibrium-air

flows (Murray and Lewis, 1978; Thareja et al., 1983; and Thompson et al., 1983). Sim-

ilarly, the initial conditions to start the nonequilibrium-air PNS Solutions were obtained

from a VSL blunt-body scheme for nonequilibrium-air flows (Swaminathan et al., 1983).

The quality of such VSL solutions has been discussed in great detail by Thompson et

al. (1983) and Bhutta et al. (1985b). The VSL blunt-body solution is interpolated to

obtain the starting solution at the initial data plane (IDP) for the 3-D PNS afterbody

solution. We typically choose the starting location to be approximately 2-3 nose-radii

downstream of the nose stagnation-point location.

3.4.2. Wall Boundary Conditions

The boundary conditions at the wall consist of six independent relations representing

the nature of the gas mixture and the physical conditions at the wall. These conditions

are:

(1)

(2)

(3)

(4)

(5)

and

(6)

Equation of state of the gas: f(p,p,T) = 0

No-slip condition for "u' velocity component: pu = 0

No slip condition for 'v' velocity component: pv = 0

No slip condition for 'w' velocity component: pw = 0

Specified wall temperature: (pT) = pTw.

Zero pressure derivative in the _2 direction (p .¢2= 0)

The first five boundary conditions are easy to visualize as they represent the actual

physical conditions at the wall. The sixth boundary condition on the pressure derivative

comes from a boundary-layer-type analysis performed at the wall. The above set of

boundary conditions are well-posed and form a linearly independent set.

For the chemistry problem of the nonequilibrium PNS solution scheme represented

by the species conservation equations [Eqs. (3.13)], the wall boundary conditions used

consist of either (i) a fully-catalytic wall [Cl= Cl**], or (ii) a non-catalytic wall

I-C_.¢2= 01. In the current study, however, we have only used fully-catalytic wall

boundary conditions.
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3.4.3. Boundary Conditions at the Shock

The boundary conditions at the outer bow shock are, however, much more involved.

This boundary condition involves a fully-implict and crossflow coupled shock-fitting

approach, and the bow shock is predicted as the solution marches down the body. This

fully-implict bow shock-fitting scheme will be discussed in detail in Chapter 4.

3.4.4. Circumferential Boundary Conditions

Presently, the proposed three-dimensional nonequilibrium PNS schemes can only

treat flows with a pitch plane of symmetry; i.e, the vehicle geometry is symmetric with

respect to the pitch plane and there is no yaw. For such a case the boundary conditions

at the windward and leeward pitch planes consist of reflective or symmetric boundary

conditions. The symmetric and reflective boundary conditions used in the present study

are based on the second-order crossflow boundary conditions used by Kaul and

Chaussee (1983) and Shanks et al. (1979).

3.5. Laminar and Transitional/Turbulent Flow Simulation

The present 3-D external flow PNS scheme includes capabilities for modeling laminar

as well as transitional/turbulent flows. The discussion so far has involved laminar flow

conditions; however, the two-layer turbulent eddy-viscosity model of Cebeci and Smith

(Cebeci, 1970) has also been included along with the transitional model of Dhawan and

Narasimha (1958). Appendix F includes a detailed discussion of this

transitional/turbulent flow modeling.

The procedure used for determining the surface heat-transfer rate and surface skin-

friction is discussed in detail in Appendix G. Furthermore, the surface integration of

pressure and skin-friction to obtain the vehicle force and moment data is discussed in

Appendix H.
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IV. FULLY-IMPLICIT SHOCK-FITTING PROCEDURE

4.1. Development of the Shock-Fitting Equations

In this study we have developed a new fully-implicit and crossflow coupled shock-

fitting scheme. In this scheme the bow shock location is iteratively predicted as the

solution marches down the body. This chapter provides a brief but complete description

of this shock-fitting approach. The important features of this bow shock-fitting ap-

proach are:

(a) The bow-shock shape location is predicted along with the tlowfield solution and does

not have to be specified a priori.

(b) Unlike earlier noniterative shock-propagation approaches (Kaul and Chaussee, 1983;

Shanks et al., 1979; and Chaussee et al., 1981), the present shock-fitting scheme is

fully iterative and treats the various gas models (perfect-gas or equilibrium-air or

nonequilibrium-air) accurately and in a unified manner.

(c) Unlike earlier noniterative shock-propagation approaches (Kaul and Chaussee, 1983;

Shanks et al., 1979; and Chaussee et al., 1981), the present approach does not as-

sume the flowfield behind the shock to be inviscid. This can be quite important

when strong flowfield gradients exist behind the shock, as may be the case in the

nose-dominated region and in regions where the bow shock starts to interact with

the imbedded shock waves (or compression waves) originating from the body.

(d) Unlike the iterative shock-fitting approaches of Helliwell et al. (1980) and Lubard

and Helliwell (1973), the present shock fitting approach is not only for a general

curvilinear coordinate system but also does not increase the matrix size of the

block-tridiagonal solution between the body and the shock.

(e) Unlike any earlier iterative or noniterative bow shock-fitting scheme, the present

shock-fitting scheme does not neglect the crossfiow coupling effects at the shock.

This results in accurate and smooth shock shapes even when there are strong

crossflow variations of the conditions behind the shock. This can be especially im-

portant when dealing with complex 3-D configurations (which is one of the main

objectives of this study) where the 3-D nature of the body can interact with the bow
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shock and substantially distort it. Similar strong crossflow variations may also oc-

cur on simple configurations when pitched at large angles of attack.

In developing the present bow shock-fitting scheme we assume that from one iter-

ation to the next the shock-points move along the _2 grid line. This direction corre-

sponds to the intersection of the _l=constant and _2 =constant surfaces. This

assumption allows us to reduce the size of unknowns to be solved, and the final solution

has only one additional unknown at the shock which completely defines the spatial

movement of the shock point. This smaller size of the unknowns is very important for

a faster iterative solution and faster convergence characteristics of the overall implicit

shock-prediction scheme. Furthermore, this simplification only represents a certain

constraint on the direction in which the shock-point moves and has no affect on the

accuracy of the shock-crossing equations.

Furthermore, in order to simplify the numerical solution, it is assumed that the metric

derivatives y ._2and z ._ at the shock can be safely assumed as known from the previous

iteration; i.e.,

,n+l n
Y,_2h _ (Y,¢2)s

,n+l n
z,h h -_ (z,_2)s

(4.1)

This is also only a simplification and does not affect the accuracy of the final converged

solution. For the case of nonequilibrium-air flows a frozen shock-crossing approxi-

mation is used.

Using the first of the aforementioned assumptions we denote the amount by which

the shock point moves in the _2 direction as A,. In other words

- .n+l n+l
¢2)s + (Als (4.2)

Thus the corresponding movement of the shock-point coordinates from one iteration to

the next can be written as

,n+l n n+l
xjjs (xj) + (xj.c h(A) (4.3)

Furthermore, we define a set of six unknowns (0c _) such that
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n+l , _n+l
cx1 = (x,_)s

CX_+I , ,n+l= (y,h)s

Oc_+l - .n+l= (z,¢)_

_X_+I . ,n+l= (y,h_s

a_+l - ,n+l= (z,h h

(4.4)

Where it should be noted that these five unknowns are actually functions of a single

unknown (A,) "+1such that

_C_+I n . ,n--n+l= _l + (x,_)s'as
, ,n--n+l

a_ +1 = _ + tY,h)_
,. ,n--n+l

n n+l
_+1 =_ + [(y,h)sAs ],h

_+1 n n n+l= _5 + [(z,_)s_, ]z3

(4.,5)

At this point we define three orthogonal vector directions n, t and s at the shock

surface (note that these are not unit vectors). The vector n is normal to the shock sur-

face. The vector t is tangent to the shock surface and directed in the _3 direction. The

vector s is also tangent to the shock surface and orthogonal to vectors n and t

It can be shown that these vectors can be written as

s = _1(_42 + _)i + _s(_2ccs - cc3_4)j - _5(cc2aS - ¢x3_xa)k

n= (_2_5--c_3_4)i - alczsj + _l_4k

t = a4i + ask

(4.6)

Or

S = [Sx(0_l, Or4, ccs)]i + [Sy(_2, cz3, _X4, as)]j + [Sz(_2, °ca, 0_4' _5)3 k

n -- [nx(_ 2, _a, cc4, _5)] i + [ny(0q, 0cs)]j + [nz(_ _, _4)']k

t-- [ty(_4)]j + [tz(_s)]k

(4.7)

With such a definition of the shock-normal and shock-tangent vectors the velocity

components normal and tangent to the shock surface can now be written as

V s = (u:,, -4-v:y -4-%%)/1s1

V n = (u_n_ + Vsny + %nz)/lnl

Vt = (U:x + Vjy + %tz)/Itl

(4.8)
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where V,, V, and V, are the velocity components in the n, t and s directions, respec-

tively. Similarly we can also define the freestream velocity components (V,)._, (V,)**

and (V ,)_.

Having defined the relevant velocity components for the purpose of writing the five

Rankine-Hugoniot shock-crossing equations (representing the conservation of mass,

momentum and energy), we note that we have actually seven unknowns at the shock.

These seven unknowns are written in a vectorial form as

qs -- [-P, pu, pv, pw, pT, p, A] T (4.9)

Thus we need two more equations to close the system of equations at the shock. One

of these additional equations is the equation of state of the gas and the other equation

is provided by applying the differential continuity of mass equation behind the shock.

As we see no approximation other than the assumption of a Rankine-Hugoniot shock

has been made. These equations are equally valid whether the conditions behind the

shock are viscous or inviscid dominated or whether substantial flowfield gradients exist

behind the shock.

The seven governing equations at the shock can now be written as

h + V212 - (ho),,o = 0

pV_ - poo(Vn)_ = 0

p[V_- (v,)j = o

p[V, - (v,)_] = 0

p- poo+p(V,,)2- poo(v,,)_ = 0

along with the equation of state written in the functional form

f(p,T,p,Ci) = 0

and the differential continuity equation written as

(pUi/J),_,-- 0
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Equations (4.10a) to (4.10f) are quite straight forward; however, the differential conti-

nuity equation [Eq. (4.10g)] needs some further elaboration. Noting the definition of

contravariant velocity components (U j), we can re-write this equation as

[a,.xj(puj)],_, = 0 (4.10g)

where

alx = (z,_2_4 - y,hes)

aly = x,_2oc 5

alz = -- x,_2_ a

a2y ---- _ _1_5

a2z = t_l_ 4

a3y = (z,_2ctI -- x,_2ct3)

%z = (x,h_2 -- Y,_2al)

(4.11)

It should be noted that the dependance of all the quantities appearing in Eqs. (4.10a)

to (4.10g) on the seven unknowns at the shock point (q,) is now completely described.

Thus we can write the seven equations [Eqs. (4.10a) thru (4.10g)l at the shock in the

vectorial form

fn+l fs(q_+l) _ 0 (4.12)

These equations can now be linearized around the previous iteration. Using central-

differenced approximations for _3 derivatives and backward-differenced approximations

for _1 and _2 derivatives, we can rewrite these equations in the form

n "A ,n+l * n(As)k"t qs)k-l nt-(Bs)k"(Aqs)_+I q" (Cs)_"AIqs)k+l'n+1

( )_ qk,LMAX--I * n
+ • 0 = (gs)k

(4.13)

where A ,, B; and C, are 7x7 matrices, g; is a vector oflength 7 and D, is a 6x6 matrix.

These equations represents the final set of equations to be solved at the shock point in

conjunction with tlowfield solution within the shock-layer.
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4.2. Coupling of the Shock-Point Solution With the Inner

Flowfield

As can be seen with from Eq. (4.13) the solution of the equations at the shock are

coupled to the inner flowfield solution through _nk.LMAX-IA""+'• In order to finally solve this

system of equations we note that Eq. (3.14) shows that the inner flowfield solution (from

-- 1,2,3..,LMAX-1) is decoupled in the crossflow direction. Thus a forward substitution

approach is used for all crossflow planes to develop the recursive relations

A n+l - n+l (4.14)Xk.e = -- Rk,e" ZXXk,e+, + rk,¢

Now we note that based on our smoothing approach we can write to a second-order

accuracy

An+! - n+l (4.15a)qk,LMAX-1"_Xk,LMAX--!

A n+l -- n+l
qk,LMAX -_ _Xk,LMAX (4.15a)

The inner fiowfield solution can now be related to the shock-point solution vector

Aq_+t through relations of the form

A n+l (4.16)qk,LMAX--I = -- I-Rk,LMAX-I 0]• (Aqs)_ +l + rk,LMAX_I

After substituting Eq. (4.16) into Eq. (4.13), we can reduce Eq. (4.13) to the form

Arc "A ,n+l n n -n+l n• ( qs)k-I + Bk" (Aqs)_ +1 + Ck • (Aqs)k+l = gk (4.17)

Equation (4.17) is now solved using appropriate reflective and symmetric boundary

conditions in the leeward and windward pitch planes of symmetry. This solution gives

simultaneously the Aq, ,+t vectors at each shock point (k= 1,2,3,...,KMAX).

Using the shock point solution and the recursive relations of Eq. (4.14), we can ob-

tain the intermediate solution vector AX "+' for all interior points. The final smoothed

solution at these interior points is than determined from Eqs. (3.8a) and (3.8b). The x,

y and z coordinates of the new shock point locations are now determined using Eq. (4.3)

and the grid is updated for the next iteration. This overall iterative process is repeated

until the solution converges at all grid points, and then the solution moves on to the next

marching step.
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V. GRID GENERATION AND RELATED

CONSIDERATIONS

Five grid-generation schemes for external flows were considered in this study; namely,

(1) cylindrical grid generation, (2) parabolic grid generation, (3) body-normal grid gen-

eration, (4) a modified body-normal grid generation and (5) elliptic grid generation. The

cylindrical grid-generation scheme is used for axisymmetric cross sections, while the

other four grid-generation schemes can be used for nonaxisymmetric 3-D cross sections.

The body-normal and modified-body-normal grid-generation schemes are used for pre-

dominantly convex cross sections, while the elliptic grid-generation scheme is for general

3-D cross sections. The following sections discuss the details of these two grid-

generation schemes.

5.1. Cylindrical Grid-Generation Algorithm

A simple cylindrical grid-generation scheme has been incorporated in the code to

generate the grids for simple geometries with axisymmetric cross sections, such as

multiconic configurations. For such cylindrical grids the grid points between the body

and the shock are generated using a simple algebraic grid-generation procedure. In this

approach we define the grid-distribution function r/such that it is 0 at the wall and goes

to 1 at the shock. In fact the overall grid-distribution function is divided into a variably

spaced grid near the wall and equally spaced grid near the shock; i.e.,

0 < _L < _/Lo variable-spaced grid for L < Lc
(5.1)

t/t, c N rh. N 0 equally-spaced grid for L > Le

where the break point (L c) is defined as

Lc = k(LMAX) (5.2)

The grid-distribution function t/is defined by the relation

A_/L = A_/L._I[1 + eoyt_
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where

_'L = I--[2(L--2)/(L c-I)-1] 2 for L<L c
(5.4)

= 0 for L > L c

From Eqs. (5.2) thru (5.4) it can be seen that if 'k' and At/_ are specified, Eq. (5.3) be-

comes a recursive relation which only depends upon _ 0.

and (5.1), we obtain

LMAX

Z Ar/L(_O)= 1
L=I

Thus, by combining Eqs. (5.3)

(5.5)

Equation (5.5) is solved numerically to obtain the appropriate value ofe 0, and the final

grid-distribution function is then generated as

_]L = _]L--Iq" A_/L (5.6)

where _/,= 0 and L = 2,3,....,LMAX.

Since this cylindrical grid-generation scheme is very simple and allows a direct control

on the grid generated, it is the best choice when considering geometries with

axisymmetric cross sections. When using 50 points between the body and the shock

(LMAX = 50), we typically choose k = 0.6 and At/1-- 0.0001.

5.2. Parabolic Grid-Generation Algorithm

In order to better model geometries with nonaxisymmetric cross sections, we have

also incorporated a parabolic grid-generation scheme in our nonequilibrium 3-D PNS

scheme. This grid-generation scheme is based on the work of Noack (1985), which was

appropriately modified to suit our solution scheme. The parabolic grid-generation is a

fast and efficient way of generating almost orthogonal grids in the near-body region.

Actually, the differential equations solved are the same as those for a fully elliptic grid

generation scheme; however, the number of iterations performed is very few.

In the parabolic grid-generation scheme of Noack (1985), the grid-generation

equations used are based on the elliptic grid-generation equations. This transformation

between the physical and computational space is governed by Laplace's equation. After

inverting these equations, so that they represent the transformation from the computa-

tional to the physical space, we can write the grid-generation equations as
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where

aly_2_2 + a2Y_2_3 + a3y_3_3 = 0

alz_2_2 + a2z_2_3 + a3z_3h = 0

a I = y_ + z_2

a2 = --2(y_2z h + Y_3Z_)

2 Z 2a3 = Y_3 + h

(5.7)

(5.8)

For the parabolic grid generation, the _2 direction is chosen as the marching direction.

If the index _' denotes the grid points in the _2 direction, the parabolic formulation of the

elliptic grid-generation equations [Eqs. (5.7)] is achieved by treating the grid points at

_'+ 1 in a special manner. In the approach of Noack (1985), a simple algebraic technique

to predict the grid at the d'+ 1 location. This predicted grid at the ¢'+ 1 location and the

already calculated grid-point locations at the _'-1 location are then used to evaluate the

coefficients in Eqs. (5.7). Similarly, the y._2¢3 and the z _2_3terms can be estimated and

used as source terms on the right hand side of the equations. The resulting equations

can be solved using a simple tridiagonal solution scheme in the _3 direction.

As noted by Noack (1985), with a parabolic marching scheme it is not easy to satisfy

the specified grid-point locations at the shock. This problem is also observed in the

hyperbolic grid-generation schemes. In Noack's approach this problem is circumvented

by using a weighting function which gradually changes the grid from a nearly orthogonal

grid at the wall to an algebraic grid behind the shock. Furthermore, with this approach

the computational grid smoothly blends into the specified grid-point locations at the

shock. It is important to note that an important advantage of such a parabolic grid-

generation scheme over a hyperbolic grid generation scheme is that the shock-point lo-

cations are specified by the user and not determined by the grid-generation scheme. This

also provides the user with a better control on the grids generated. Our experience with

such a grid-generation scheme has been very encouraging. We have observed that by

using some care in specifying the shock points and by doing as many as 5 iterations on

the parabolic grid-generation, good quality grids can be generated with reasonable ease.

5.3. Body-Normal Grid-Generation Algorithm

The body-normal grid generation scheme uses grid lines which are straight body

normal in an axis-normal plane. A simple algebraic grid generation is then used to lo-
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cate the grid points along these body-normal grid lines. This grid generation is faster

then the parabolic grid generation scheme, while at the same time it does not have the

problem of grid twisting. However, with this straight body-normal grid generation

scheme, abrupt changes may occur around relatively sharp body corners due to the

rapidly changing crossflow body slopes.

5.4. Modified Body-Normal Grid-Generation Algorithm

A modified body-normal grid generation scheme was developed specifically to address

the grid-generation problems posed by bodies with relatively sharp corners in the cross-

flow direction. In this case the grids generated are body normal everywhere except in

the corner region where the grid slopes are gradually varied to provide a smoothly

changing grid. For convex three-dimensional shapes, this grid-generation scheme pro-

vides a fast and efficient way of generating accurate and well-behaved grids.

5.5. Elliptic Grid-Generation Algorithm

The elliptic grid-generation scheme is based on the work of Sorenson and Steger

(1978), Chaussee and Steger (1981) and Kaul and Chaussee (1984). In this approach,

the elliptic grid between the body and the outer bow shock corresponds to the solution

of the following elliptic partial differential equations.

aYhh _ 2by¢3 h + cYh¢2 = _j2p

az¢3h _ 2bzh h + czhh = _j2Q
(5.9)

where

a = Yh + z2

b = yhy_3 + zhz h

c = Yh + z3

J = yhzh - yhzh

(5.10)

The functions P and Q in Eq. (5.9) control the grid clustering and and grid orthogonality.

Numerically it is very difficult to exactly satisfy the user-specified grid-clustering dis-

tribution and also the orthogonality constraints of the elliptic grid (described by the P

and Q functions inside the wall and shock region). In the present approach the P and

Q functions at the wall and at the shock are based on imposing grid orthogonality con-
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straints, while inside they are exponentially varied from their specified values at the wall

to the specified values at the shock.

This exponential variation of the forcing functions P and Q works very well, except

that the grid generated does not correspond to the grid-clustering finally required.

However, one can use this grid and interpolate on it along _3= constant lines to get the

desired clustering. Unlike the actual grid before interpolation, the final interpolated grid

is not exactly orthogonal every where. However, it does ensure grid orthogonality at the

body and the shock and also ensures that the grid lines thus generated will never cross.

In short, the basic requirements for a good computational grid are satisfied.

Since the final grid is generated by interpolating on the elliptic grid in _2 direction, the

elliptic grid can be generated using fewer grid points in the _ direction. Furthermore,

since exact orthogonality of the grid it not really needed, there is no additional advan-

tage in driving the grid-iterations to complete convergence. Thus, we use a maximum

of 30 equally-space _2 grid points for the elliptic solution and limit the number of grid

iterations to 25. Typically, in these iterations the grid coordinates are converged to

within 0.01-0.1% of their local value and the residual norm has decreased by 3 orders

of magnitude. In addition, in our scheme the full elliptic grid-generation is done only

once at a marching step, which is during the first solution iteration. In subsequent sol-

ution iterations at a step, only the shock points move along _3= constant grid lines.

Thus, during each iteration the elliptic grid between the body and the shock is not

changed and only the grid points at the shock are adjusted to account for the shock

motion. The required flowfield grid is generated by simply interpolating on this adjusted

elliptic grid. This approach accounts for substantial computational savings, while re-

taining the powers of a full elliptic grid generation.
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VI. MODIFICATIONS FOR 2-D/AXISYMMETRIC

INTERNAL FLOWS

The coordinate system used in this 2-D/axisymmetric internal-flow PNS scheme is a

general curvilinear coordinate system (_1,_2). The _, coordinate is along the channel axis

and is also the marching direction. The _, coordinate stretches from the channel axis to

the outer wall boundary, and lies in an axis-normal plane (see Fig. 3).

The flowfield unknowns are the density (p), the density-velocity products (pu, pv and

pw), the density-temperature product (pT) and the pressure (p). Here u, v and w are the

velocity components in x, y and z directions, respectively. Although v=0 for 1-plane

2-D/axisymmetric flows, it has been retained in the numerical formulation to simplify

future extensions. The five equations representing the differential conservation of mass,

momentum and energy are mathematically closed by using the equation of state for the

gas. The gas models treated in this internal flow study consist of perfect-gas,

equilibrium-air and nonequilibrium-air gas models.

The overall approach used is very similar to our 3-D PNS approach for external

flows. Briefly speaking, after expanding the solution around the previous (n-th) iter-

ation, using two-point streamwise differencing, and using central-differenced approxi-

mations for all _ derivatives, we can write these governing equations in a

block-tridiagonal system of equations. This system of equations is then solved to obtain

the solution changes between the previous (n-th) and the current (n+ I) iterations. In

order to damp the numerical solution oscillations caused by these central-differenced

approximations, we use a fourth-order dissipation approach for the pressure field. In

addition, a second-order streamwise dissipation model is also used to suppress any nu-

merical oscillations caused by the use of small marching step sizes.

The boundary conditions along the channel axis consist of six independent relations

representing the equation of state and the physical conditions along the channel axis.

However, the flow along the channel axis is numerically complicated by the existance

of a geometric singularity at the Channel axis (r = 0, where r is the radial distance from

the channel axis). This geometric singularity is primarily due to a singularity in the
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transformation Jacobian (J) along the channel axis (r = 0). However, this is a removable

singularity, and the effects of this geometric singularity can be removed by appropriately

expanding the metric derivatives in the small region around the channel axis (r=0).

Analysis shows that along the channel axis these terms can be written as

J(r) = -l/rr h

¢l,x(r) = I

,rt,y(r ) = 0

Ct,z(r) = o

_2,x(r) = r¢,/r¢2

_2,y(r) = 0

_2,z(r) ---- l/re,

(6.1)

In the governing equations, these terms typically appear as either of the form _.xj/J

(convective terms) or of the form _2_i_:_,jlJ (thin-layer viscous terms). However, if these

terms are evaluated as ratios rather than calculated individually, it is seen that all these

metric ratios have actually a finite value of zero at r= 0. When used in the governing

equations, these metric terms result in zero viscous effects and zero Us velocity along the

channel axis, where U2 is the contravariant velocity in the _2 direction. Furthermore,

these results are also consistent with the boundary conditions along the

2-D/axisymmetric channel axis.

The problem represented by the governing 2-D/axisymmetric PNS equations is also

a split-boundary-value problem; i.e., the equations are hyperbolic-parabolic in the _, di-

rection and elliptic in the _2 direction. Thus, in order to solve the problem completely,

we need initial conditions to be specified at the start of the marching procedure and

boundary conditions to be specified along the channel axis and at the outer wall

boundary (away from the channel axis).

The boundary conditions along the channel axis consist of simple reflective and

symmetry boundary conditions. These boundary conditions imply that along the chan-

nel axis p._: = (pu)._2 = (pv) = (pw)._2 = (pT)._2 = P._2= 0. The outer wall boundary consists

of isothermal, no-slip boundary conditions and assumes that the axis-normal pressure

gradient at the wall is zero (P.c2 = 0). When combined with the equation of state, these
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wall-boundary conditions provide six mutually-coupled equations to be solved at the

wall.

As far as the initial conditions to start the PNS internal-flow marching procedure are

concerned, they need to be appropriately generated in an internally consistent manner.

This internal consistency is important because flowfield inconsistencies may lead to nu-

merical difficulties in obtaining a converged solution. This is especially true in the

near-wall region. In the present case, the initial profiles for the various internal-flow

calculations were generated assuming a slug-flow condition. In this case uniform inflow

conditions were assumed everywhere except at the wall, where the wall density and

wall-temperature were adjusted to account for the specified wall temperature.
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VII. VECTORIZATION STUDIES WITH THE 3-D PNS

SCHEME

In this vectorization study, we have mainly emphasized a better management of the

fast-core memory, appropriate re-structuring of the loop indicies to minimize the strides

and memory-paging operations, and a re-formulation of the predictor-corrector solution

scheme to make it more vectorizable. The present solution scheme involves a block-

matrix solution approach, which is typical of most of the present-day implicit flowfield

solvers. These block-matrix solvers represent efficient solution schemes for computers

which predominantly perform scalar operations. Since the sizes of the block matrices

involved are typically between 4 and 6 (depending upon the particular solution scheme),

a direct implementation of these solution schemes on vector machines does not produce

any significant operational improvement. Any significant speed-up of the corresponding

vectorized operations requires the development of an entirely different storing and in-

dexing strategy, which also has to take into account the non-recursive and vectorizable

direction of operations.

Another problem with these block-matrix solvers is that they involve a large number

of vector-matrix multiplications, matrix-matrix multiplications and inversions of the

small block matrices. If the indexing strategy is not properly chosen, these simple op-

erations may either require access to information which is not within the same memory

bank or, even worse, may require the replacement of the current memory bank with new

information from the core memory. Thus, several system I/O operations may be re-

quired to perform these simple operations. The problem gets more complicated when

we consider the additional constraint that, with the current auto-vectorization features

on IBM or Cray-like machines, only the inner most loops are vectorized. Thus, for best

auto-vectorization results, most loop structures need to consist of either one big loop

or a big loop nested inside a small outer loop.

7.1. Array Indexing and Memory Access Strategy

In our PNS formulation, the stored matrix elements require addressing indicies of the

form (K,L,N,M), and the vector elements require addressing of the form (K,L,N). Here
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K is the crossflow index, L is the axis-normal index, N is the row index and M is the

column index. After careful consideration of the various options, we believe that the

best possible strategy is to store the matrix elements as a double index (KLN,M) and the

vector elements as a single index (KLN). When doing operations which are only recur-

sive in the axis-normal (L) direction, the KLN index is defined as

KLN=(L-I)*KMAX*6 + (K-l)*6 + N. The schematic description of this indexing

strategy for storing vectors is shown below.

L=I

(Body)

I_2

K= 1 K=2 ....... K=KMAX

(windward) (leeward)
+ _+ +----+ .... +

I 12 3 4 5 6 I 12 3 4 5 6 I ....... I 1 2 3 4 5 61-->
+ 4 m_+__+ _+ I

< ....................... < ................................ +

I + -'+ + --+_ =+

+->J I 2 3 4 5 6 I 1 2 3 4 5 6 I ....... J i 2 3 4 5 61-->
+__-+ .... +---.... +__+ l

<mlmlml lmlmlmmmmmllllNml<llllmmmmlllmmm II_ lmm mll lllllmmmm+

I

I
< ....................... < ................................ +

I +- +-_+----+_+

_LMAX +->1 1 2 3 4 5 6 I 1 2 3 4 5 6 I ....... I 1 2 3 4 5 6]
(Shock) +_+ ........ + +-- +

Thus, V(1),V(2),V(3), .... ,V(KLN), .... ,V(LMAX*KMAX*6)

where KLN=[(L-I)*KMAX+K-I]*6 + N

Schematic description of the vector storage

On the other hand, when doing operations which are recursive in the crossflow (K)

direction, the KLN index is defined as KLN = (K-1)*LMAX*6 + (L-l)*6 + N. Thus,

for any given grid point (K,L) all the row elements occupy successive storage locations

in the same memory bank, and are simultaneously available.

As far as the column elements (M) are concerned, their storage locations may vary

with the computer at hand. For IBM-type computers where the storage is in column

form, the present approach will be ideal because for any (K,L) location all the 36 matrix

elements will be stored in 36 consecutive locations in the same memory bank, and will
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be simultaneously available for operations. The schematic description of this indexing

strategy for storing matrices is shown below.

L=I

(Body)

L=2

K=I K=2 ....... K=KMAX

(windward) (leeward)

M=6 / 1 2 3 4 5 6 / 1 2 3 4 5 6 / ....... / 1 2 3 4 5 6 /
M=5 / 1 2 3 4 5 6 / 1 2 3 4 5 6 / ....... / 1 2 3 4 5 6 /

M=4 / I 2 3 4 5 6 / 1 2 3 4 5 6 / ....... / 1 2 3 4 5 6 /

M=3 / 1 2 3 4 5 6 / 1 2 3 4 5 6 / ....... / 1 2 3 4 5 6 /

M=2 / I 2 3 4 5 6 / 12 3 4 5 6 / ....... / 1 2 3 4 5 6 /
4-- - + +_+ I-

I 1 2 3 4 5 6 I 1 2 3 4 5 6 I ....... I 1 2 3 4 5 6J-->
+---==------ --+= i---+--_+ J

j +__-+=- q 4- _-_+

+'>I 1 2 3 4 5 6 I 1 2 3 4 5 6 I ....... 1 1 2 3 4 5 61-'>

+__+: +_-_+-_-+ I

I

I
<....................... <................................ +

J +_+ + + +
L=_AX+->I 1 2 3 4 5 6 I 12 3 4 5 6 I ....... I 1 2 3 4 5 61

(Shock) + - "+_+_+

Thus, A(I,M),A(2,M),A(3,M), .... ,A(KLN,M), .... ,A(LMAX*KMAX*6,M)

where KLN=[(L-I)*KMAX+K-I]*6 + N

Schematic description of the matrix storage

On Cray-type machines where the storage is in row form, with the present approach

each of the column elements will be stored at locations which are KLNMAX apart,

where KLNMAX is the maximum dimension specified for the KLN index. On such

Cray-like machines the memory banks are stored in a form analogous to a rotating table.

Thus, one can choose the KLNMAX value to be such that the effective stride has a ac-

ceptable value, such as 1. Thus we believe that our storing strategy will be well suited

for almost all IBM or Cray-like computers which support auto-vectorization. We have

performed some sample vectorization tests on the NAS Cray-2 and Cray-Y/MP com-

puter facility at tile NASA Ames Research Center, CA, in which we tested the matrix-

matrix multiplications, matrix-vector multiplications and matrix inversion algorithms

using the proposed indexing strategy, and compared it with the corresponding approach

using the classical nested-loop way of doing such operations. The results indicated that,
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with the propsed indexing strategy, the simple matrix-matrix and matrix-vector multi-

plications performed 2-3 times faster, while the matrix inversion algorithm worked 15-16

times faster.

With this indexing strategy, apart from the aforementioned vector/matrix operations,

various other load and store operations involved in our 3-D PNS code have also become

more vectorizable. We have revised our 3-D perfect-gas and equilibrium-air PNS code

to use this indexing strategy and loop restructuring.

7.2. Initial Timing Studies

Before making any vectorization changes, we did a timing study on our 3-D PNS

code at a typical marching step using a 31x30 crossflow grid. The results showed that,

at a marching step for the particular test case being considered, the QUICK geometry

calculation took nearly 20% of the total time, the output and disk storing operations

accounted for another 20% of the total time, and 60% of the time was spent in doing

the actual numerical solution. A schematic description of the distribution of computing

time spent in the PNS calculations is given below.

C

P

U

T

i

m

e

i00 %

80 %

60 %

40 %

20 %

0%

I I
[ Time spent in QUICK package [
[ (geometry-dependant operat ions) [

[ Time spent in input/output operations [

l (fixed overhead which becomes small [

[ when total computing time increases) [

Actual computing time spent in the
numerical calculations (subroutine

STEP) and includes

(a) Property calculations - 3%
(b) RHS calculations 6%

(c) LHS calculations 9%

(d) Predictor-corrector solution - 77%

(e) Grid-generation, etc. 5%

Typical distribution of computing time spent at a marching step
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The numerical solution is done by one controlling subroutine (STEP), so we have fo-

cussed our attention on vectorizing this subroutine. The subroutine STEP consists of

five (5) distinct operations; namely, (i) turbulent viscosity calculations, (ii) evaluation

of the explicit right-hand-side (RHS) terms, (iii) evaluation of the implicit left-hand-side

(LHS) terms, (iv) the predictor-corrector solution and (v) grid generation and solution

updating. As shown in the illustration obove, for the first iteration of the test case cal-

culations, before any vectorization modifications, the turbulent viscosity and gas prop-

erty calculations accounted for 3% of the time spent in subroutine STEP, the RHS

calculations took 6% of the time, the LHS calculations took 9% of the time, the

predictor-corrector solution took 77% of the time, and the grid-generation accounted for

the remaining 5% of the time spent in subroutine STEP.

7.3. Vectorization and Restructuring Studies

In our vectorization studies we concentrated on modifying (a) the viscosity and gas

property calculations, (b) the RHS calculations, (c) the LHS calculations, and (c) the

predictor-corrector solution scheme. The results show that with our indexing strategy

and loop re-structure, the time taken by the viscosity calculations was reduced by a

factor of 2-3, the time taken by the RHS calculations was reduced by a factor of 6-7, and

the time taken by the LHS calculations was reduced by a factor of 5-6. As far as the

predictor-corrector solution scheme is concerned, typically, the predictor step and the

subsequent corrector step take nearly equal amount of time. The results show that with

the present modifications the time taken by the predictor step as well as the corrector

step was reduced by a factor of 4-5. Finally, the results of this vectorization effort and

the associated timing studies show that with our current code-reorganization and re-

structuring, the time taken by subroutine STEP has been reduced by a factor of 4-5.

This means that the overall computing time for a particular 3-D calculation will also be

reduced by nearly a factor of 4-5. For 2-D/axisymmetric calculations, however, the re-

sults show a factor of 2 reduction in the required computing time.
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VIII. A SIMPLIFIED ANALYSIS FOR DEPARTURE

Unlike classical PNS treatments in the present approach the governing PNS

equations are written in as a differential/algebraic system rather than a pure differential

system. By a differential/algebraic system we mean a system of equations composed of

several differential equations coupled together through an algebraic relation. In the

present PNS formulation the differential equations governing the conservation of mass,

momentum and energy are coupled together through the algebraic relation representing

the equation of state. By studying a model differential/algebraic problem (see Appendix

I) we have been able to show that unlike classical PNS treatments (Schiff and Steger,

1979; Shanks et al., 1979; Chaussee et al., 1981; and Vigneron et al., 1978) the present

formulation is unconditionally time-like (Bhutta and Lewis, 1985c and 1985d). In order

to further demonstrate this approach we also studied a simplified version of the govern-

ing PNS equations. The general outline and conclusions of this simplified eigenvalue

analysis are briefly presented in the following discussion.

In order to simplify the required mathematics, let us restrict ourselves to

(a) two-dimensional perfect-gas flows, and

(b) an evenly spaced square grid such that _,_, = _2., = 1 and _,.z = _2.x = 0

The simplification of a perfect gas is done with the understanding that even for the

actual multi-component reacting-gas case the fluid is still assumed to be a mixture of

perfect gases. Consequently the basic numerical scheme has to be at least stable for a

single-species perfect-gas model. Furthermore, we choose to approximate the equation

of state for a perfect gas by

yp - pT + 0(p,h + p,¢2) = 0 (8.1)

where the coefficient '0' is chosen such that 0-_0, and for all practical purposes

0p,¢1 + 0p,¢ +?p - pT '-" ?p - pT
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It should be noted that the use of this coefficient 0 is for the sole purpose of the fol-

lowing stability analysis, and not for the actual solution scheme. In other words, the

actual solution corresponds to the use of 0 = 0. The reason for introducing this coeffi-

cient "0' is that it makes the streamwise jacobian matrix nonsingular, so that one can

perform certain matrix operations to simplify the stability analysis. Furthermore, there

are no mathematical tools available to directly determine the character of

differential/algebraic systems. The available mathematical tools are strictly for purely

differential systems. Thus, by introducing the coefficient '0' in Eq. (8.1) we are able to

transform our differential/algebraic problem into a purely differential form, which can

then be analyzed.

The choice of'small enough 0' does not adversly affect the resulting conclusions. In

other words we can take the limit 0_0. This is indeed a heuristic approach, and the

justification comes from the model differential/algebraic problem discussed in Appendix

D. The use of'0' in Eq. (8.1) corresponds to the use ofthe "_' term in Formulation II

of the model problem. For this model problem it has been shown in Appendix D that

the choice of _0 + does not produce any singularity in the final solution. This fact has

also been numerically demonstrated by the present authors in their earlier work (Bhutta

and Lewis, 1985d).

With the equation of state given by Eq. (8.1), and after neglecting the viscous terms

containing the contributions of w and w,, 2, we can write the simplified PNS equations

as

+ (A_.d)d 2- _[M n.d],_2- A_.d

= _ if n + f 2".,2- es ,_2- hn]

where

d = Aq n+l

and AT, A] and M ° are the jacobian matrices.

(8.2)

(8.3)

If we assume that A_', A_ and M" do not change with _ and _2 (a frozen coefficient

analysis), we can write

_ B rA_ • d,_l + A_. d,:2 • d ¢2¢2+c = 0 (8.4)
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Although the above equation is a significantly simplified version of the original PNS

equations, it is still difficult to study directly. As a further simplification, we choose to

separately look at the viscous and inviscid limits of Eq. (8.4). We also note that as a

minimum criterion of streamwise stability (which in this case, and for the class of PNS

schemes based on the Schiff-Steger formulation, implies a marching-like character of the

governing equations), the "simplified PNS equations" being studied have to be

streamwise stable (i.e., marching-like in the streamwise direction) in the viscous as well

as the inviscid limits. In the following sections we look into the streamwise stability

(marching-like character) of the viscous and the inviscid limits of Eq. (8.4).

8.1°

or

Inviscid Limit

The inviscid limit of Eq. (8.4) can be written as

f-!
d C1+ [A_tA_:] .d,¢ + A, • c = 0 (8.5)

d,_l + N 1 • dg2 + c = 0 (8.6)

This equation is now in a form which can be easily studied. For Eq. (8.6) to be sta-

ble, the _ direction should be a valid marching direction. In other words, Eq. (8.6) has

to be hyperbolic/parabolic or marching-like always. This condition is satisfied if the

eigenvalues of N _ are all real. If for simplicity we assume that w < < u, then an

eigenvalue analysis gives the eigenvalues of N_ as (Bhutta and Lewis, 1985d)

= (1,w/u, w/u, w/u, w/u) (8.7)

Thus, we see that all the eigenvalues of N _ are unconditionally real. That is to say, the

simplified PNS equations being studied are unconditionally marching-like in the inviscid

limit and represent a stable marching scheme in the subsonic as well as the supersonic

flow regions.

It is of interest to consider the case where (like conventional non-iterative PNS

schemes) we do not uncouple the pressure terms. In such a case the form of A_ f is

similar to the one studied by Schiff and Steger (1979). The only difference is that we

have pT as the independent variable rather than 'e'. The A _f matrix for such a case is

nonsingular and, thus, can be inverted. However, the eigenvalues of N x for such a case

VII1. A SIMPLIFIED ANALYSIS FOR DEPARTURE 43



(where we do not uncouple the pressure) turn out to be complex in the subsonic flow

regions, and the marching scheme becomes unstable (not marching-like; i.e., elliptic)

unless methods such as the sublayer approximations of Schiff and Steger (1979) or

Vigneron et al. (1978) are used.

8.2.

or

Viscous Limit

In the viscous limit, Eq. (8.4) simplifies to

t--1
d._ t = [A_'B f].d _2¢2+ AI "c (8.8)

d¢ 1 = N 2 • d, ¢2_2+ c (8.9)

In this form, the stability analysis becomes much simpler. The criterion of a stable

marching scheme requires that Eq. (8.9) should be parabolic. The parabolic character

depends upon the eigenvalues of N 2, which should be real. Furthermore, in order to

have positive diffusion effects in the _ direction, these eigenvalues should also be posi-

tive. Thus, for the viscous limiting case to be stable, the eigenvalues ofN 2 should be real

and positive. An eigenvalue analysis of N 2 shows that the eigenvalues are (Bhutta and

Lewis, 1985d)

a i = (0, 0, _/_/Prpu, 4e#/3pu, e#/pu) (8.10)

Thus, the eigenvalues tr t are always real; however, they are positive only ifu > 0. That

is to say, as long as no flow reversal occurs in the streamwise direction, the viscous limit

of the simplified PNS equations is also unconditionally marching-like. Since flow re-

versal means axial separation, this streamwise stability requirement actually tells us that

a "single-sweep" solution of these PNS equations can not be marched through regions

of axial flow separation. Of course, this conclusion comes as no surprise and has been

a well accepted fact in fluid mechanics for a long time. It may be of value to note that

the viscous terms do not include any pressure terms and, thus, for the present scheme

as well as the previous PNS schemes the viscous terms do not provide any speed-of-

sound contribution to the eigenvalues of the viscous limit. The speed-of-sound con-

tributions to these eigenvalues for the viscous limit can come only from the jacobian

matrix corresponding to the streamwise convective terms. For the classical PNS
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schemes (Schiff and Steger, 1979; Shanks et al., 1979; Chaussee et al., 1981; and

Vigneron et al., 1978), this speed-of-sound contribution is the one which causes the

problem of negative eigenvalues in the subsonic sublayer region. For the present PNS

scheme, although the speed of sound does appear in the streamwise jacobian matrix

(A[), it does not contribute to the eigenvalues in the viscous limit.
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IX. RESULTS AND DISCUSSION

A brief overview of the main features of the present PNS scheme is given in Appendix

J along with a point-by-point comparison with classical non-iterative PNS schemes. In

order to evaluate the applicability of this PNS scheme, in this study several external flow

and internal flow calculations were done using perfect-gas, equilibrium-air and

nonequilibrium-air gas models. The main results of these 3-D external flow and

2-D/axisymmetric internal flow calculations are discussed in the following sections.

9.1. 3-D External-Flow PNS Calculations

For these 3-D external-flow studies, we studied the 5-deg angle-of-attack flow around

a sample lifting configuration at a Mach number of 20. The flight altitude for this test

case was 125 kft, and the wall temperature was kept fixed at 2000 degrees Rankine. The

freestream conditions for this case are given in Table 4, and the vehicle geometry is

shown in Fig. 4. This model geometry was developed using the QUICK geometry

package (Vachris and Yeager, 1974). It consists of a spherically blunt elliptical cross

section with a fiat bottom. This vehicle has a nose radius of 0.1 inch and has a total

length of 50 Rn. The foremost nose-afterbody tangent point for this geometry is at

0.778 Rn, and the side surface has a compression corner between 20-25 Rn. The wall

temperature for these calculations was fixed at 2000 °R, and only fully laminar flow

conditions were considered. For nonequilibrium-air calculations, only fully-catalytic

wall boundary conditions were used.

9.1.1. Grid-Generation Results

In order to better model the geometry and the flowfield around it, in this Case 1 study

we have looked at the use of (a) a parabolic grid generation, (b) a body normal grid

generation, (c) a modified body-normal grid generation and (d) an elliptic grid gener-

ation. The modified body-normal grid-generation scheme was used in the Case lc cal-

culations, the body-normal grid-generation scheme was used in Case ld and the

parabolic grid-generation scheme was used in Case le. In order to make a realistic

comparison, the crossflow grid distribution used at the surface in all cases was the same.

IX. RESULTS AND DISCUSSION 46



Some sample grids generated at x= 30 Rn by using these schemes are shown in Figs.

5 thru 9. The grid generated using the parabolic grid-generation scheme is shown in Fig.

5, the body-normal grid is shown in Fig. 6 and the modified body-normal grid is shown

in Fig. 7. As can be seen from these grids, for the case considered, all the grid generation

schemes work reasonably well. There are, however, some important differences in the

final grids generated. The parabolic grid shown in Fig. 5 shows a small amount of grid

twisting developing around the lower body corner. This twist has started to develop

even after efforts were made to match the crossflow grid distribution at the body and the

shock. Furthermore, if the crossflow grid in the corner region was made any finer, there

would be a substantial increase in grid distortion. The corresponding body-normal grid

given in Fig. 6 shows that although the grid twisting is eliminated, due to the rapidly

changing body slopes around the corner region, the crossflow grid distribution away

from the body is not good. The modified body-normal grid in Fig. 7 shows that the

grid-twisting and the crossflow grid-spacing problems of the parabolic and the body-

normal grids have been adequately resolved.

Although the modified body-normal and the parabolic grids shown look similar, the

important difference is that farther down the body length the parabolic grids become

excessively distorted while the modified body-normal grids are still well behaved. The

computing times given in Table 5 show yet another important difference in the effects

of these grids. These computing times show that the calculations with the body-normal

and the modified body-normal grid generation schemes take nearly 15-20% less time

than the corresponding calculations using the parabolic grid generation scheme. Thus

we see that our modified body-normal grid-generation scheme not only provides better

quality grids for such geometries, but it is also faster and more efficient.

Figure 8 shows the elliptic grid for the geometry and flowfield conditions of the

perfect-gas Case 1. The elliptic grid shown in Fig. 8 was generated at an axial location

of 28 Rn, and used 31 crossflow planes and 30 points between the body and the shock.

The wall boundary points were generated using equally spaced _3 (crossfiow) arclength,

whereas the corresponding boundary points at the shock were located using body-

normal lines from the grid points on the body. The initial guess on the elliptic grid was

generated by joining the corresponding grid points at the body and at the shock by

straight lines; in short a body-normal grid. Consequently, just like the body-normal grid

of Fig. 7, the initial crossflow grid spacing around the side corner was much to large.

This choice was made deliberately to see how the elliptic grid generation improves the

grid distribution. Figure 9 shows the _3= constant grid lines for this case and shows that,
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compared to a straight body-normal grid, the elliptic grid-generation scheme does indeed

improve the crossflow grid spacing in the near-wall region.

9.1.2. Perfect-Gas and Equilibrium-Air Flowfield Predictions

Several types of calculations were done to study these cases, which are summarized

in Table 5. Cases la thru le are for a perfect-gas model, while Case 2 is for an

equilibrium-air gas model. Case la corresponds to a 51x30 grid with fourth-order

smoothing and was done using the modified body-normal grid-generation scheme. Case

lb corresponds to a 31x30 grid with fourth-order smoothing effects, while Case lc cor-

responds to a 31x30 grid with second-order smoothing effects. Cases ld and le are for

31x30 grids using body-normal and parabolic grid-generation schemes, respectively.

Except for the equilibrium-air gas model used, the grid generation and smoothing used

in Case 2 is the same as the one used for Case lb. In all these grids, the grid-spacing

near the wall was kept at 0.01% ofthe local shock-standoff distance. It should be noted

that only the Case la calculations were carried over the entire body length, whereas, the

calculations for Cases lb thru le and Case 2 calculations were done for only the first 30

nose radii of the body length.

The results of the Case la (perfect-gas) calculation are shown in Figs. 10 thru 16.

The grid detail around the corner region of the geometry at x= 30 Rn is shown in Fig.

10. The perfect-gas pressure contour plots at x = 20 Rn, x = 30 Rn, x = 40 Rn and x = 50

Rn along the body are shown in Figs. 11 thru 14, respectively. These figures clearly

show a strong embedded shock around the lower corner surface which is quite developed

by x= 30 Rn. By x= 40 Rn this embedded shock starts to interact and impinge on the

bow shock, and in the process pushes the bow shock outwards along the corner region.

The embedded shock wave is still clearly visible in these contour plots. By x = 50 Rn the

embedded shock has mostly coalesced with the bow shock; however, the shock surface

is still quite distorted because of the rapidly changing body geometry (especially the

corner region) and the resulting strong interaction with the embedded shock wave. It is

important to note that despite the large changes and the strong interaction encountered

at the bow sock, the shock shape predicted is smooth and the solution converges quickly.

This is indeed a credit to the new fully-implicit and crossflow-coupled shock-fitting

scheme used. The corresponding temperature and density contours at x = 30 Rn are

shown in Figs. 15 and 16, respectively.
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The results of the Case 2 (equilibrium-air) calculation are shown in Figs. 17 thru 19.

This Case 2 calculation uses a 31x30 grid along with the fourth-order smoothing for-

mulation. The crossflow pressure contours for this equilibrium-air case at x= 30 Rn are

shown in in Fig. 17. The corresponding temperature contours at x= 30 Rn are shown

in Fig 18, and the density contours are shown Fig. 19.

9.1.3. Nonequilibrium-Air Flowfield Predictions

The crossflow pressure contours for the nonequilibrium-air Case 3a calculation at

x= 20Rn, x= 30Rn, x= 40Rn and x = 50Rn are shown in Figs. 20 thru 23, respectively.

Just like the perfect-gas case, the effects of the 7.5 deg compression turn at x= 25Rn

(and at _b= 90 °) are clearly visible. The embedded compression wave can be seen to

move toward the bow shock, interact with the bow shock and push it outwards. It can

be seen that despite the strong gradients in the flowfield, the predicted flowfield solution

is quite well behaved. As can be seen from these figures, a strong embedded shock is

clearly developed by x= 30Rn and impinges on the outer bow shock by x = 40Rn. By

x = 50Rn the embedded shock and the bow shock have almost coallessed in the vicinity

of the corner region; whereas, away from the corner region there is still some weak evi-

dence of the embedded shock wave.

The axial distribution of the surface pressure along the windward (_b = 0°) and the

leeward (_b= 180 °) pitch planes are shown in Fig. 24, and the corresponding crossflow

distribution of the wall pressure at the body end (x= 50 Rn) is shown in Fig. 25. These

figures include the predictions of both Case 3a (51x30 grid) and Case 3b (31x30 grid)

calculations. These results show that the wall pressure is equally well predicted with the

coarse (Case 3b) grid. Along the windward side the surface pressure is almost constant

and sharply rises as we approach the the side corner (_ = 90°). The flow then rapidly

expands around this corner region, goes through some over expansion and then recom-

presses slightly as we approach the leeward pitch plane. The corresponding crossflow

distribution of the shock-standoff distance at the body end is shown in Fig. 26, and

shows the rapid thinning of the shock layer around the corner region. Again, there is

no noticable difference between the predictions of the fine (Case 1) and coarse (Case 2)

crossflow grids.

The axial distributions of the wall heat-transfer rate along the windward and leeward

pitch planes are shown in Fig. 27, and the corresponding crossflow distribution at the

body end is shown in Fig. 28. Figure 27 shows that along the body the predictions of
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the fine crossflow grid (Case 3a) and the coarse crossflow grid (Case 3b) are in very good

agreement with each other. The maximum differences are around the x = 25 Rn location,

where the fine grid (Case 3a) predictions are about 10% higher than the corresponding

coarse grid (Case 3b) predictions. However, in the afterbody region these predictions

become even closer. Figure 28 shows the crossflow distribution of heat-transfer rate at

the body end, and shows that the Case 3a and Case 3b predictions are almost identical

every where except on the leeside where the coarse grid (Case 3b) predictions are about

5% lower. The corresponding crossflow distribution of the streamwise skin-friction co-

efficient is shown in Fig. 29. As expected, the skin-friction predictions follow the same

trend as the aforementioned predictions of the surface heat-transfer.

The predicted species concentration distributions for the Case 3a (51x30 grid) calcu-

lations are shown in Figs. 30 thru 39. The crossflow contour plots of the predicted

electron number density (1/cm _) at x = 20Rn, x = 30Rn, x = 40Rn and x = 50Rn locations

are shown in Figs. 30 thru 33, respectively. These results show that the predicted

electron-density distribution (as well as the related species mass-fractions) is smooth and

well behaved, and the gradients have also been captured quite well. This is reflective of

the quality of the present 3-D nonequilibrium PNS solution scheme. Another important

feature seen from these figures is the fact that, as the lower body corner becomes more

pronounced, the dissociation and ionization levels in the vicinity of this lower corner

decrease. This is consistent with the strong convection effects away from this corner

region, which tends to move the dissociated and ionized species away from the corner

toward the leeward and windward sides. This is a good example of the flowfield chem-

istry being strongly influenced by the three-dimensional nature of the vehicle geometry.

The corresponding crossflow contours of the species mass-fractions at the the body

end are shown in Figs. 34 thru 39. The species mass-fractions of O and O = are shown

in Figs. 34 and 35, whereas the N and N _ mass-fractions are shown in Figs. 36 and 37.

Figures 38 and 39 show the predicted mass-fractions of NO and NO + at the body end.

In all cases the predicted mass-fraction distributions are smooth and well behaved

9.1.4. Gas Model Effects

The Case la (perfect-gas), Case 2 (equilibrium-air) and Case 3b (nonequilibrium-air)

calculations in this study use the same computational grid and the same numerical

scheme, and differ only in the gas model used. Thus, these numerical calculations rep-
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resent a good data base to study the effects of the using different gas models when

studying such complex 3-D configurations.

The axial and crossflow distributions of the various flowfield quantities obtained us-

ing perfect-gas, equilibrium-air and nonequilibrium-air gas models are shown in Figs. 40

thru 45. carried out only up to x= 30 Rn, whereas the nonequilibrium-air calculations

extend up to the body end (x = 50 Rn).

The axial distribution of surface pressure is shown in Fig. 40, while the corresponding

crossflow distribution at x = 30 Rn is shown in Fig. 41. These results show that, in

general, the present nonequilibrium-air predictions are bounded on the upper side by the

perfect-gas predictions and on the lower side by the equilibrium-air predictions. Even

so, the nonequilibrium surface-pressure predictions are much closer to the corresponding

perfect-gas predictions than the equilibrium-air predictions.

The crossflow distribution of the shock-standoff distance at x = 30 Rn is compared in

Fig. 42. These results show that under these flow field conditions the nonequilibrium

shock-standoff distance along the windward and leeward sides is in close agreement with

the perfect-gas prediction, which is much larger than the corresponding equilibrium-air

prediction. However, in the corner region the predicted nonequilibrium shock-standoff

distance is much closer to the corresponding equilibrium-air value. In general, the

nonequilibrium predictions of the shock-standoff distance are bounded on the upper side

by the perfect-gas predictions and on the lower side by the equilibrium-air predictions.

The effects of perfect-gas, equilibrium-air and nonequilibrium-air gas models on the

surface heat-transfer rate are shown in Figs. 43 and 44. The axial distributions of the

surface heat-transfer rate are compared in Fig. 43, whereas the corresponding crossflow

distributions at x= 30 Rn are compared in Fig. 44. These results show that the pred-

ictions of the three gas models are within 5% of each other. Again it is seen that, in

general, the nonequilibrium predictions are bounded by the corresponding perfect-gas

and equilibrium-air predictions. The crossflow distribution of the streamwise skin-

friction coefficient at x= 30 Rn is shown in Fig. 45 and follows the same trend as the

predictions of the surface heat-transfer rate.
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9.1.5. Effects of Higher-Order Smoothing

The effects of second-order and fourth-order smoothing were studied using the Case

lb and Case lc calculations. The only difference between these two cases is that Case

Ib uses our recent fourth-order accurate smoothing formulation, whereas the Case lc

uses our previous (Bhutta and Lewis, 1985a-d) second-order accurate formulation. Fig-

ures 46 and 47 show some sample results of these calculations. The axial distributions

of wall heat-transfer are shown in Fig. 46, and the corresponding crossflow distributions

at x= 30 Rn are compared in Fig. 47. These figures show that the predictions using the

second-order and fourth-order formulations are in excellent agreement. The maximum

differences in the heat-transfer rates are ofthe order of I% or less. Thus, for all practical

purposes, in this particular case the predictions of the fourth-order and second-order

formulation are the same. However, there is an important difference in the computing

times required for these calculations. The computing times given in Table 5 show that

the calculations with fourth-order formulation took 5 min and I1 sec on IBM 3090

(model 200VF), while the similar calculations with the second-order formulation took 6

rain and 11 sec. Thus, although the converged results did not change, with the fourth-

order formulation the solution converged at a faster rate and resulted in a 20% reduction

in the overall computing time required.

9.1.6. Small Marching Step-Size Capabilities

Figure 48 shows some sample wall heat-transfer results showing the small step-size

capabilities of the current PNS scheme. These results are for the Mach 19.2 flow over

a 6-deg sphere cone at a flight altitude of 120 kft. The nose radius (Rn) for these cal-

culations was 0.05 inch and the gas model used was equilibrium chemically-reacting air.

The vehicle geometry was 1000 Rn (50 inches) long and solutions were done with 10 Rn,

5 Rn, 2.5 Rn, 1 Rn, 0.25 Rn and 0.1 Rn step sizes, respectively. Figure 48 shows that

there are negligible (if any) differences in the numerical predictions of the various step

sizes. It should be noted that the form of streamwise damping used in these calculations

was such that the solutions with I0 Rn, 5 Rn and 2.5 Rn step sizes had effectively no

streamwise numerical dissipation effects.

The PNS calculations shown in Fig. 48 used 50 points between the body and the

shock. The solutions with 10 Rn, 5 Rn, 2.5 Rn, 1 Rn, 0.25 Rn and 0.1 Rn step sizes took

11 see, 17 sec, 28 sec, 58 sec, 204 sec and 493 see on the Cray Y-MP, respectively. The
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corresponding number of axial marching steps required for these calculations were 135,

227, 420, 1009, 3985 and 9955, respectively.

9.1.7. Computing Times

The computing times for the Case 1, Case 2 and Case 3 calculations are shown in

Table 5. These computing times show that, after accounting for the differences in grid

sizes, the present nonequilibrium computing times are only a factor of 2-3 more than the

corresponding perfect-gas or equilibrium-air computing times. Thus, despite the com-

plex three-dimensional geometry being modeled and the numerical complexity of these

nonequilibrium-air calculations, the overall computing times are quite reasonable and

certainly very affordable.

9.2. 2-D/Axisymmetric Internal-Flow PNS Calculations

Sample 2-D internal-flow calculations were done using three (3) different cases (Cases

4, 5 and 6). Two sets of initial conditions were considered, as shown in Table 6. The

first set of initial conditions was estimated from the computed results of Mach= 25

perfect-gas flow over a 5%10 ° ramp-inlet configuration at an altitude of 150 kit. The

resulting inflow conditions at the inlet consisted of Mach= 6.7 flow at a pressure of

142.2 psfand a peak inlet temperature of 5332.89 ° Rankine. The inlet Reynolds number

for this case is 2.33x 1@. The next set of inlet conditions correspond to a Mach 10 inlet

flow at a pressure of 50 psf and a temperature of 500 ° Rankine, and the corresponding

inlet Reynolds number is 1.76x 106. In all these internal-flow tests, only fully laminar flow

conditions were considered.

9.2.1. Case 4 Calculations

The Case 4 configuration (see Fig. 49) consists of a 50 ft long 2-D channel with a 2

ft wide inlet (half channel width = R = 1 It) and a 4 ° compression surface located 5 ft

from the channel enterance. At 13 ft from the channel inlet, this 4 ° compression surface

becomes horizontal, and the subsequent channel remains straight. The locations of

these compression and expansion corners have been designed using inviscid (y= 1.4)

calculations to provide wave cancellation and, consequently, a shock-free exit flow.

These Case 4 calculations were done using the Mach 6.7 inlet conditions, and the wall

temperature was kept fixed at 2000 ° Rankine.
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These Case 4 calculations were done using (a) a perfect-gas model (Case 4a), (b) an

equilibrium-air gas model (Case 4b), and (c) a nonequilibrium-air gas model (Case 4c).

In all cases 150 grid points were used across the channel half-height, and the maximum

axial step size was 0.25 R (where R= 1 ft is the half channel height). The axis-normal

grid distribution was very fine near the wall, and it was gradually made coarse toward

the centerline.

Figures 50 thru 52 show the pressure contours for these Case 4 calculations. The

pressure contours for x=0.11 R to x= 15.77 R are shown in Fig. 50, the pressure con-

tours for x= 15.77 R to x= 32.02 R are shown in Fig. 51, and the pressure contours for

x= 32.02 R to x=50 R are shown in Fig. 52. These figures show that the present

perfect-gas, equilibrium-air and nonequilibrium-air results are smooth and well behaved.

The shock-wave structure agrees very well with the inviscid predictions, except that exact

wave cancellation does not occur in the viscous case. This is because, in the viscous

case, the embedded shock wave is not a line discontinuity, rather it has a finite thickness.

However, after the expansion corner, there are only a few weak shocks which dissipate

quickly and the subsequent exit flow tends to become uniform and free of shocks. It is

interesting to note that, compared to the inviscid calculations, the predicted exit pressure

distribution has a significant viscous-induced component (approximately 30% larger).

Furthermore, the use of equilibrium-air as well as nonequilibrium-air gas models has a

significant effect on the embedded shock structure and the exit pressure. The

equilibrium-air gas model predicts a 20% lower exit pressure than the perfect-gas model,

and the nonequilibrium-air gas model predicts a 37% lower exit pressure, both

equilibrium-air and nonequilibrium-air gas models predict that the shock waves travel

further downstream than the perfect-gas case and, thus it takes much longer for the

embedded shocks to dissipate. In general the equilibrium-air and nonequilibrium-air

predictions are in good agreement with each other, and predicted pressures are substan-

tially lower than the perfect-gas case.

The pressure profiles at x = 7.5 R and x= 11.5 R are compared in Fig. 53. This figure

also shows that the embedded shocks have been captured quite well. It is interesting to

note that the equilibrium-air and nonequilibrium-air gas models predict much sharper

embedded shocks. Since the streamwise as well as the axis-normal grids for all cases are

practically the same, this difference is primarily due to the gas model. It is possible that

the sharpness of the embedded shocks can be further improved by either a larger number

of axis-normal grid points or a better distribution of the the grid points available. So far,

our studies have shown 150 points to be quite adequate in resolving flowfield gradients;

IX. RESULTS AND DISCUSSION 54



however, in subsequent studies we will also study the effects of using finner axis-normal

grids.

Axial distribution of the pressure along the channel axis is shown in Fig 54, and the

axial distribution of the pressure along the channel wall is shown in Fig. 55. These re-

sults also show that the pressure distributions predicted by the equilibrium-air and

nonequilibrium-air gas models differ by less than 10%; however, they are substantially

lower (20-40% lower) than the corresponding perfect-gas predictions. The consistently

good agreement between the equilibrium-air and nonequilibrium-air calculations indicate

that for this Reynolds number (2.33x 105/ft) the flow is close to equilibrium. This is im-

portant because the present uncoupled nonequilibrium solution scheme becomes nu-

merically stiff (difficult to solve) under equilibrium or near-equilibrium conditions, and

this case may be a borderline case. This is also substantiated by the next set of calcu-

lations (Cases 5 and 6), which are for a higher Reynolds number condition (1.76x 106/ft)

and, thus, even closer to equilibrium.

The Cray-Y/MP computing times for these case 4 calculations are shown in Table

7. The perfect-gas (Case 4a), equilibrium-air (Case 4b) and nonequilibrium-air (Case 4c)

calculations took 212, 226 and 227 marching steps and required 59, 105 and 268 sec,

respectively. It should be noted that the current internal flow code is an un-optimized

research code, and we expect these computing times to be significantly improved with

further code restructuring and vectorization.

9.2.2. Case 5 Calculations

The Case 5 configuration (see Fig. 56) consists of a 50 ft long 2-D channel with a 2

ft wide inlet (half channel width = R = 1 It) and a 2° compression surface located 5 ft

from the channel enterance. At 18.57 ft from the channel inlet, this 4 ° compression

surface becomes horizontal, and the subsequent channel remains straight. Like Case 4,

the locations of these compression and expansion corners were also designed using

inviscid (y = 1.4) calculations to provide wave cancellation and, consequently, a shock-

free exit flow. These Case 5 calculations were done using the Mach 10 inlet conditions,

and the wall temperature was kept fixed at I000 ° Rankine.

These Case 5 calculations were done using (a) a perfect-gas model (Case 5a) and (b) an

equilibrium-air gas model (Case 5b). Compared to Case 5, in this case the Reynolds

number is higher (1.76x 106/ft). Consequently, the flow is even closer to equilibrium and,
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thus, the nonequilibrium-air calculations suffer from convergence problems resulting

from the numerical stiffness of the uncoupled species conservation equations. For these

cases 150 grid points were used across the channel half-height, and the maximum axial

step size was 0.1 R.

Axial distribution of the pressure along the channel axis is shown in Fig 57, and the

axial distribution of the pressure along the channel wall is shown in Fig. 58. These re-

suits also show that the pressure distributions predicted by the perfect-gas and

equilibrium-air are almost identical. It should be noted that in this case the wall tem-

perature is I000 ° Rankine and the peak flowfield temperatures are 2500o-3500 ° Rankine.

These are relatively low temperatures and, thus, the corresponding gas-model effects on

the pressure distribution are quite small. However, for higher flowfield temperatures the

gas models effects could be larger.

One of the purposes of this higher Reynolds number case was to reduce the amount

of viscous induced pressure and thus provide potentially better agreement with the

inviscid calculations. Indeed the results show that the viscous exit pressure is only 10%

higher than the inviscid predictions. Furthermore, the predicted embedded shock struc-

ture is also in very good agreement with the inviscid predictions.

The Cray-Y/MP computing times for these Case 5 calculations are shown in Table

7. The perfect-gas (Case 5a) and equilibrium-air (Case 5b) calculations took 526

marching steps and required 146 and 223 sec, respectively. These differences in the

computing times for the perfect-gas and equilibrium-air calculations are primarily due

to the larger number of iterations required by the equilibrium-air calculations at each

marching step (20-25 iterations for the equilibrium-air calculations compared to the

10-15 iterations for perfect-gas calculations).

9.2.3. Case 6 Calculations

The Case 6 configuration (see Fig. 59) consists of a 100 ft long 2-D channel with a

2 ft wide inlet (half channel width -- R = 1 It) and a sustained 0.50 compression surface

located 5 ft from the channel enterance. This configuration was chosen to investigate

the effects of sustained compression. These Case 6 calculations were also done using the

Mach 10 inlet conditions, and the wall temperature was kept fixed at 1000 ° Rankine.
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These Case 6 calculations were done using (a) a perfect-gas model (Case 6a) and (b) an

equilibrium-air gas model (Case 6b). Just like the Case 5 calculations, in this case the

Reynolds number is higher (1.76x 106/ft); consequently, the flow is close to equilibrium

and numerical stiffness problems occur in the nonequilibrium-air calculations. In this

case 150 grid points were used across the channel half-height, and the maximum axial

step size was 0.1 R.

Axial distribution of the pressure along the channel axis is shown in Fig. 60, and the

axial distribution of the pressure along the channel wall is shown in Fig. 61. These re-

suits also show that the pressure distributions predicted by the perfect-gas and

equilibrium-air are almost identical, and are in very good agreement with the inviscid

predictions. Again, since the flowfield temperatures are relatively low (25000-3500 °

Rankine), the corresponding real-gas effects on the pressure distribution are quite small.

However, at higher wall and flowfield temperatures the gas models effects could be

larger. It should be noted that in this case the flowfield between the inlet and the exit

goes through a strong and sustained compression, resulting in exit pressures which are

approximately 10 times the inlet pressure. This sustained compression is equally well

predicted by the inviscid and viscous calculations; however, unlike the inviscid pred-

ictions, the viscous effects result in a quicker dissipation of embedded shocks. Thus,

after nearly 50 ft along the channel, the viscous calculations predict a continuous com-

pression rather than the discontinuous pressure rise due to embedded shocks.

The Cray-Y/MP computing times for these Case 6 calculations are shown in Table

7. The perfect-gas (Case 6a) and equilibrium-air (Case 6b) calculations took 1011 and

962 marching steps and required 343 and 380 sec, respectively. In this case the perfect-

gas and equilibrium-air calculations typically required the same number of iterations at

each step and, consequently, the final computing times differed by only 10-15%.
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X. CONCLUSIONS

A new 3-D PNS scheme has been developed to study three-dimensional hypersonic

flows over complex 3-D configurations. This PNS scheme has been used to study the

flow around a three-dimensional lifting configuration at an angle of attack of 5 deg and

a Mach number of 20. In addition, it has also been demonstrated that this basic PNS

scheme can also be extended to study 2-D/axisymmetric supersonic/hypersonic internal

flows. These external-flow and internal-flow PNS schemes can treat perfect-gas,

equilibrium-air and nonequilibrium-air gas models in a consistent and unified manner.

The results of these studies substantiate the following comments:

(1) Based on the axisymmetric PNS scheme of Bhutta and Lewis (1985a-b) a new

three-dimensional PNS scheme has been developed for perfect-gas, equilibrium-air

and nonequilibrium-air external flows. This three-dimensional PNS scheme is un-

conditionally time-like in the subsonic as well as the supersonic flow regions and

does not require the use of any sublayer approximation. Furthermore, the scheme

permits very fine grids to be used in the near-wall region for improving solution

accuracy.

(2) This PNS scheme uses a fourth-order accurate smoothing approach which is an

extension of the earlier second-order approach of Bhutta and Lewis (1985a-b). In

this approach the crossflow smoothing effects are applied to all variables; however,

the smoothing effects in the axis-normal direction are limited only to the pressure

field. This results in accurate wall heat-transfer and skin-friction predictions even

with coarse grids in the axis-normal direction.

(3) A new predictor-corrector solution scheme has been developed to treat the strong

crossflow coupling effects in and around the crossflow separated regions. This

predictor-corrector scheme involves the same amount of operations as an Approx-

imate Factorization scheme; however, it retains a stronger coupling between the

crossflow and body-normal directions.

(4) At the shock a new fully-implicit shock-prediction scheme has been developed and

used for 3-D external flows. This scheme uses a general curvilinear coordinate
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system and predicts the correct shock location without having to make any ap-

proximation about the viscous or inviscid nature of the flow behind the shock.

Furthermore, this shock-fitting solution is fully coupled in the crossflow direction,

results in smooth and accurate shock-shapes, and has very good stability and con-

vergence characteristics.

(5) It is shown that with a pseudo-unsteady algorithm, the present fully-iterative

three-dimensional results can be obtained accurately and efficiently without any

significant computing-time penalty. Furthermore, due to the enhanced solution

accuracy, much larger marching steps can be used which substantially reduces the

final computing times.

(6) Cylindrical, parabolic, body-normal and elliptic grid-generation schemes have been

successfully incorporated in the present 3-D PNS scheme to efficiently and accu-

rately model a wide class of complex three-dimensional configurations. It is shown

that for lifting configurations with generally convex cross-sections, the body-

normal grid generation scheme produces very good grids which are smoothly be-

haved. For general 3-D cross sections the present elliptic grid generation scheme

represents a powerful yet economical means of generating the required computa-

tional grids.

(7) The results of the three-dimensional test cases considered show that substantial

three-dimensional crossflow effects exist in the predicted flowfields. Even in regions

where the body surface looks like a two-dimensional or an axisymmetric surface,

there are considerable three-dimensional effects from the neighboring flow regions.

Thus, simple quasi 2-D or axisymmetric approximations for these flowfield regions

are inadequate, and the overall flowfield is best predicted using an appropriate

three-dimensional solution scheme.

(8) Due to the strongly three-dimensional nature of the flowfields around complex

lifting configurations, a localized grid refinement at the expense of the neighboring

regions may not be an appropriate approach. In such cases the solution inaccura-

cies in the neighboring regions do exert a strong influence on the local solution

accuracy. Thus, for such flowfield calculations a more uniform grid refinement is

a better and safer solution strategy.
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(9) Studies with different types of gas models show that for complex configurations,

the type of gas model used has a substantial effect on the important flowfield

quantities; such as, the wall pressures, the shock-standoff distances, wall heat-

transfer and skin-friction predictions, etc.

(10) Results of the 2-D/axisymmetric internal-flow calculations show that the basic PNS

scheme developed for external flows is also applicable to internal flow conditions.

Test case results for some simple 2-D cases show that the viscous internal-flow PNS

predictions are in excellent agreement with classical 2-D inviscid techniques.
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APPENDIX A. DERIVATION OF THE 3-D FULL PNS

EQUATIONS

The general motion of viscous compressible fluids is described by the well known full

Navier-Stokes (NS) equations (Bird et al., 1960, and White, 1974). If we assume (a)

Newtonian fluid behavior, (b) Stokes' Hypothesis, and (c) no body forces, we can write

the three-dimensional NS equations as

(pu),_+ (pv),y+ (pw),z= o (A.l)

(P u2 +P),x + (pvu), y + (pwu), z = al (A.2)

(puv), x + (pv 2 ÷p), y ÷ (pWV), z = a2 (A.3)

(puw), x + (pvw), y + (pw 2 +p), z -- a3 (A.4)

(puq_),_+ (prO), y+ (pw¢), z = a4 (A.5)

where

and

aI = [2_U,x - (2g/3)V • V], x + [_(u y + V,x)]'y

+ Eg(u z + W,x)],z

a 2 ---- [2_V,y -- (2_/3)V • V], y + [_(V,x+ u y)],x

+ N(v, z + w y)].

a3 = [2_w, z - (2g/3)V ° V]. z + [-_(w.x+ u, z)],x

+ [_(w y + v, z)], y

(A.6)

(A.7)

(A.8)

a4 = V • (kVT) + V o (v • x) + a s (A.9)

Here t is the stress tensor for a Newtonian fluid, and is defined as (White, 1974)

"t'ij---- _[-Ui.x| ÷ Uj,xl- (2/3)_ijU_k ] (A. 11)

where 1-11_-- 1.19U 2 -----V, U 3 ----W, X 1 ---- X, X 2 _---y and x3 = z.
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Equation (A.1) corresponds to the conservation of mass, and Eqs. (A.2-A.4) corre-

spond to the conservation of momentum in the x, y and z directions, respectively.

Equation (A.5) corresponds to the conservation of energy, and these equations [Eqs.

(A.1)-(A.5)] are closed through the use of equation-of-state for the gas mixture written

in the functional form

f(p,T,P,Ci) = 0 (A.12)

The form of "_', 'a s' and the functional form of the equation of state depends upon

the gas model being used; such as, perfect-gas, equilibrium-air or nonequilibrium-air gas

model. For a perfect gas model these quantities are defined as

= CpT + 0.SV 2

as=0

f(p,T,P,Ci) = (yoop- pT) = 0

For an equilibrium-air gas model these quantities are defined as

• = h(p,T) + 0.5V 2

as=0

f(p,T,P,C 0 = [yoop/pT- Z'(p,T)] = 0

For nonequilibrium flows these quantities are defined as

= CpT + 0.5V 2

el/_ (CP)iVT" 7Ci - hi _i) + pTv • VCpa5= -fir

f(p,T,P,Ci) - (-_p- pT) = 0

(A.13a)

(A. 14a)

(A.15a)

(A.13b)

(A.14b)

(A.15b)

(A. 13c)

(A. 14c)

(A. 15 c)

The above equations have been written in a nondimensional

nondimensionalization scheme used is

t * * * S S I "2

Ui -----Ui/aoo; p = p ]Poo; T = T/Too; p = p/(pooaoo);

• * " * -- _oom* _o * "=/_//.too; k=k/koo; m= /_ ; xi=x i/Rn

form, and the

(A.16)
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Equations (A.1)-(A.5) and Eq. (A.12) can be combined together and written in the

following vectorial form:

el,x + e2, y + e3, z = _(gl,x + g2, y + g3, z) + P

Using indicial notation we can write Eq.(A.17) as

Or

(A.17)

(ej -_g)),xj = P (A. 18)

k!xj = P (A. 19)

Now consider the general coordinate transformation

=  j(Xk) (A.20)

where the orientation of our general curvilinear coordinate system is such that _t is

measured along the body, G is measured from the body to the outer bow shock, and _ a

is the crossflow direction. Thus, derivatives in the transformed space are related to the

derivatives in the physical space by

( ),¢= xj.¢_,( ),xj (A.21)

If 'J' represents the determinant of the Transformation-Jacobian for Eq. (A.20); i.e.,

J = Det[(_l, _2, _3)/(xl, x2, x3)] (A.22)

we can write Eq. (A.19) as

(1/J)(_)a,)(kk.cj) = (1/J)p (A.23)

Equation (A.23) can be further expanded as

[(1/J)(_u,k)kk] & - kk[(1 [J)(_j.,,j,)],¢j = (l/J)p (A.24)

Viviand (1974) has shown that the Jacobian satisfies the identity

J.,, --- J(_j.,)jj

where '_' is an arbitrary quantity. Equation (A.25) can be used to obtain
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J,xk = J(_J,xk),:) (A.26)

At the same time the chain rule of differentiation gives

J,xk = (_J_,k)J,Ij (A.27)

Thus, we can see that by combining Eqs. (A.26) and (A.27) we can obtain yet another

identity

- = o

The chain rule of differentiation also gives

(A.28)

[(I/J)_)._],¢) = (1/J)[(_j.xk),¢) -- (I/J)(_).,k)J,¢j]

Thus, from Eqs. (A.28) and (A.29) we obtain

[( 1/J)_l_,],¢) = 0 (A. 30)

Substituting Eq. (A.30) in Eq. (A.24), we see that the NS equations in a general

curvilinear coordinate system can be written as

[(1/J)_j_,kkk],¢) = (1/J)p (A. 3 I)

If we use the notation

(A.29)

(A.35)

fj = (I [J)_t,x ek

sj = (l/J)_j,xkg k

h = (l/J)p

we can write the NS equations in a general curvilinear coordinate system as

_._)= _%,cj+ h

In order to parabolize Eq. (A.35) we neglect all streamwise diffusion effects. With

this assumption, the three-dimensional parabolized Navier-Stokes (PNS) equations in a

general curvilinear coordinate system become

fJ,¢,= _(s2.¢2+%._3) + h (A.36)
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where

fj=Cl/J)

pUj

puUj + _j,xP

pvUj + _j, yp

pwUj + _j, zP

q)pUj

0

(A.37)

s. =

0

mnkkUd2 +0.5(mnljUj.¢)

mnkkVd2 +0.5(mn2iUj.¢2)

mnkkW,_ +0.5(mn3jUi,e 2)

{mnkkT,_2Cp/Pr + mnkkUjUj.¢2

( 1/ 3)mnikUjUk.¢_}

0

(n = 2,3) (A.38)

and

h= [0, 0, 0, h4, f-f(p,T,P,Ci)-] T (A.39)

mnjk = _n,j_n,k (A.40)

The metric product 'n_f is defined as

where n takes the values 2 and 3, respectively. The word 'full' PNS equations is used to

distinguish from the corresponding 'thin-layer' PNS equations, which are obtained by

neglecting both the streamwise (_1) and the crossflow (_s) viscous effects.

For perfect-gas and equilibrium-air flows h 4= 0, while for nonequilibrium flows

h 4 -- (1/J){_Z[ t:lmnkkkt *Pr Td2(Cp)iCn'*2 - hie°i] + pTUjCp,¢j} (A.41)
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APPENDIX B. EXPRESSIONS FOR THE JACOBIAN
MATRICES

The three-dimensional parabolized Navier-Stokes (PNS) equations for a general gas

flow in a general curvilinear coordinate system, at the j+ 1 marching step and at the

n + 1 iteration level, can be written in the following vectorial form:

f j+l,n+l ' n+i j+l, n+lj.¢j = _(s2,_2 + s3,_3)J+l' + h (B. 1)

Using a first-order Taylor series expansion around the previous iteration, we can write

fj+l,n+l ,_ fj+l,n A{+I n. Aqn+lj --j + ,

sj+l. n+l ,,_Sin+l,n + Mj+,.n. Aqn+l (B.2)-- -'-n

h j+1. n+l _ h j+l. n at- AJ+I, n • Aqn+l

where

Aqn+1 = qj+l, n+l _ qj+1. n (B.3)

The matrices Ao, Aj and M are called the jacobian matrices, and have the following form:

Aj = (1]J)

0 _j,x _j, y _j, z 0 0

-uUj _j,xu + Uj Cj, yU _j. zu 0 _j,x

-vUj _j,xV Cj, yV + Uj _j,zv 0 _j,y

-wUj _j,x w _j, yW _j, zW Jr" Uj 0 _j, z

-OUj _:j,,,O + uUj _j, yO + vUj _j, z• + wUj Uj 0

0 0 0 0 0 0

(B.4)

M n - (_/J)

0 0 0 0 0 O-

Mn21 Mn2 2 Mn2 3 Mn2 4 0 0

Mn31 Mn3 2 Mn3 a Mn3 4 0 0

Mn41 Mn4 2 Mn4 3 Mn4 4 0 0

Mn51 Mn5 2 Mns 3 Mn54 Mn5 5 0

0 0 0 0 0 0

(B.7)
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A 0 ---

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a51 a52 a53 a54 a55 0

rp o o o rpT f,p

where the definition of q) depends upon the gas model used.

q) = CpT + 0.5V 2

For an equilibrium-air gas model

q_ = h(p,T) + 0.5V 2

and for a nonequilibrium gas model

= CpT + 0.SV 2

The elements of the viscous jacobian matrix are

Mn21 = - mnkk(U/p),_ + (1/3)mnl i(uj/p),_2

Mn22 = (l/3)l-(3mnk k + mnli)(1/P),¢2]

Mn23 = (l/3)mn12(1/P),h

Mn24 = (1/3)mnla(l/P),h

M na 1 = - mnkk(V/P),_2 + (1 [3)mn2j(uj/p),_ 2

Mna 2 = (l/3)mn21(l/p), h

Mn33 = (1/3)[(3mnk k + mn22) (1/p),¢2 ]

Mna 4 = (1/3)mn23(1/P),¢2

M hal = - mnkk(w/P),¢ 2 + (1/3)mn3j(uj/p),_ 2

Mn42 = (1/3)mn31(l[p)d 2
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For a perfect-gas model

(B.9a)

(B.9b)

(B.9c)

(B.IO)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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Mn43 = (1/3)mn32(1 ]P)d2

Mna 4 = (l/3)l'(3mnk k + mn3j)(l/P)d2]

Mns i = - (T/p),¢2-Cp/Pr - mnkk(V2/p),h -- 2mnjkUj(Uk]P),¢J3

Mns 2 = mnkk(U/p),¢2 + mnlj(uJP),_J3

Mns 3 = mnkk(V/p),¢ _ + mn2j(uJp),h[3

Mns a = mnkk(W/p),_2 + mn3j(Uj/p),h/3

Mns s = mnkk(l [p),¢2-Cp/Pr

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

The elements ast thru as5 of the jacobian matrix A0 are equal to zero for perfect-gas and

equilibrium-air flows, whereas for nonequilibrium flows these coefficients are of the form

as_ = (I/J) {(el_mnkk/Pr)[( -T/p),¢2 _ (CP)iCi,¢2

E '- (TT,¢Jp) (Cp) i C,.¢2] -Y.[(h i -Thi')(_i/p) (B.27)

-Thi(_i/P)'I- TUkCp.¢_}

a52 = (I/J)Tek, x Cp,¢_ (B.28)

asj = (1/J)T_k, y Cp,ek (B.29)

a54 = (1/J)T_k, z Cp,¢_ (B.30)

and

ass = (I/J) {(el_ mnkk/Pr)[(l/P),¢2 E(Cp)iC'.¢2

+ (TdJP) Y'(CP)i'C_,j - Y.(hic_i/p)' q- UkC_,¢k }
(B.31)

In these equations the total derivative of a quantity with respect to temperature is de-

noted by ( )'. The expression for (_Jp)" is given in Appendix E, and the corresponding

values for h_" and (Cp)'_ are obtained using central-differenced approximations and the

tabular data of h_ and (Cp)_.
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APPENDIX C. FOURTH-ORDER ACCURATE
SMOOTHING TERMS

The governing three-dimensional PNS equations are elliptic in the _2 and _3 directions

so that we use central-differenced approximations for all _ and _3 derivatives. However,

as was also noted by Schiff and Steger (1979), the use of central-differenced schemes is

typically associated with solution oscillations. This oscillatory behavior becomes more

pronounced if the local velocities are small, so that the diagonal terms of the jacobian

matrices become relatively small also. In order to damp these solution oscillations, it is

necessary to add some additional higher-order diffusion terms to the governing PNS

equations.

The search for an appropriate form of the higher-order diffusion-like terms which

would permit a simple yet a fully consistent and fully implicit treatment, was very tedious

and involved. The use of central-difference formulas for _2 and _3 derivatives makes the

solution of the PNS equations second-order accurate, that is to say the leading trun-

cation error is O(A_2,, A_]). Thus, if we were to add O(A_) and O(A_) diffusion-like

terms to the right-hand side of governing equations, we would not affect the formal

second-order accuracy of the difference scheme in the _2 and _ directions. The govern-

ing equations can thus be written as

f j+l s3,_ )j+l -I- h j+lJ'¢J = e(s2g2 + _3 + [n](qj+l)](A_2)4/16 + [_:2(qj+l)](A_3)4/16 (C.I)

The proper choice of smoothing terms was actually based on a trial and error proce-

dure. To start with, an explicit relation relating the smoothed (q) and unsmoothed (X)

variables was chosen such that it included some second-order diffusion effects. A back-

tracking approach was used to obtain the corresponding smoothing terms that needed

to be added to the governing equations to produce the desired result. Once these

smoothing terms in the governing equations were obtained, the order of each of these

terms was analyzed and lower order terms were eliminated. Then, the governing

equations with the modified smoothing terms were analyzed to see the impact of these

changes on the final relationship between the smoothed and unsmoothed variables.

After several iterations of this trial and error procedure, we were able to find a proper

choice of these smoothing terms such that not only a second-order accuracy was re-
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tained, but a simple and explicit transformation between the unsmoothed and smoothed

variables was also retained.

By choosing the form of the vector n to be

nl(q) =_ (A1/A_I-Ao). a4q . a4q a4q
a¢-_2-[(A2-cM2) a¢_ ],_2-[(A3-eM3)"-- ]g_C'2a)

n2(q)= _ (A_/A_I -Ao) • aaq _ a4q a4q

a¢_ [(A2 -eM2) *_0¢4 ],¢2 - [(A3 -eM3) "_ ]dl C'2b)a¢3

one can re-write Eq. (C. 1) as

[fj + Aj.( _ A_J[16 + _4q4 A_]/16)] j+l
a_2 a_3 '_J

a4q A_]I6 + 0aq
= +M,. A I/16)] 8

aaq 4 j+l
Oatl A¢_/16 + _ A_3/16)3,¢,

+e[s3 + M3 * ( 0¢_ 0¢ 3

c34q 4+[h+ Ao•(--ZT.4A_2/16+ A_/16)]i+I+ O(a¢_,a¢_)

(c.3)

Now, let us define a new intermediate quantity X j*' as

a4q 4
0a.---._q A_4/16 + _ A¢3/16

xj+l = qj+l + 0_ a¢3

So that

a'q A¢4/16 O(A¢_,ACJ)
xj+l __ qi+l Oa'-"qg2A_/16 + 0_3- v4 -r:r., =

and

(c.4)

(c.5)

4 4
(Xi+1_ qj+,)2= O(A_, A¢_,A¢2A_3) (C.6)

Using Eqs. (C.5) and (C.6) itcan be shown that to fourth-orderaccuracy we can also

write Eq. (C.4) as

qj+l = Xj+l _ X, ¢2_2¢2_2A¢I/16 - X, _3¢3_3¢3A¢_/16 (C.7)
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Now consider the Taylor series expansion of vector fj(x j") around q J+J, i.e.,

fj(xj+1) = fj(qj+1) + [-fj,q]j+1. (xj+I _ qi+1)

_{_ [-fj,qq]j+l . (:gj+! __ qj+l)2 + .... (C.8)

__fj(qj+l) + Aj. (q, ¢2_2¢2¢2A_/16 + q, ¢3¢3_3¢3A_/16)

Thus, to fourth-order accuracy we can write the above expression as

fj(gj+l) __ fj(qj+l) + Aj. (q, h¢,¢2bA_/16 + q, ¢3_3¢3hA_34/16) (C.9)

Similar expansions can be obtained for s and h so that to fourth-order accuracy in A_

we can rewrite Eq. (C.3) in terms of an intermediate solution :g j+t as

=  EsoC j+l'] (c. 10)[fJ(gJ+1)],¢je[s2(gJ+1)],¢2+ _'" : ,¢3+ h(gJ+1)+ 4

The actual solution that we seek at the j + 1 step is related to this intermediate solution

by Eq. (C.5). If we use f to denote the grid points in the 4, direction (i.e., f= 1,2,3...

LMAX) and use k to denote the grid points in the _3 direction (i.e., k= 1,2,3... KMAX),

we can further express q j+xin terms of the intermediate solution X j+_ as

(gl)j+1---Xj+1- X,_3_3_3hA_/16

qj+1_-(Zl)j+1_ (Xl),¢2_2_2¢2A_/16

(C. 11a)

(C.lIb)

Thus, we see that in order to introduce a fourth-order accurate fully implicit

smoothing, we solve a block-tridiagonal system of equations [Eq. (C. 10)] which is iden-

tical in form to the differenced form of the original PNS equations. However, this sol-

ution is just an intermediate solution (X t+_), and the final smoothed solution (q J+_)can

be explicitly obtained by using Eq. (C.11). It should be noted that computationally this

procedure is no more involved than the original (unsmoothed) differenced form of the

PNS equations. Furthermore, another important feature of the present fourth-order

smoothing is that the additional diffusion terms are proportional to All and A_], so that

the magnitude of the aforementioned smoothing automatically decreases with a de-

creasing _2 and _ grid size, while still successfully damping out the numerical solution

oscillations. Also, despite its final simple form, the present smoothing approach is more

accurate and performs considerably better than the conventional smoothing approaches

of Schiff and Steger (1979) and Shanks et al. (1979).
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An important advantage of this formulation is that the crossflow smoothing effects

[Eqs. (C.11a)] and the axis-normal smoothing effects [Eqs. (C.11b)] can be separately

identified. Furthermore, the way these smoothing operations affect the individual

flowfield variables can also be clearly seen. Being able to separate these smoothing ef-

fects, permits us to further enhance its accuracy by restricting the axis-normal smoothing

effects to only the pressure field. Thus, Eqs. (C.11) are rewritten as

4
(_l) j+l = Xj+l - X, _3_3_3hA_3/16 (C.12a)

qj+l = (X1)j+i _ I'0,0,0,0,0,(X16), _2_2_2]TA_/16 (C. 12b)

where _6 is the sixth element of the vector Xl • In this manner, the axis-normal

smoothing effects do not degrade the wall heat-transfer and skin-friction predictions.
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APPENDIX D. SECOND-ORDER ACCURATE
STREAMWISE DAMPING

In the present PNS scheme, first-order backward-differenced approximations are used

to approximate the streamwise convective flux derivatives (f1.¢,). Such a first-order ac-

curate finite-difference representation has no inherent mechanism to check or suppress

the onset of streamwise numerical oscillations. The numerical filtering provided by this

first-order backward-differenced approximation is proportional to the streamwise

stepsize. As the streamwise step size decreases, the numerics becomes more and more

sensitive to the high frequency (small wave length) streamwise oscillations. Thus, in

order to damp and suppress the growth of any streamwise solution oscillation, small

amounts of second-order streamwise numerical dissipation effects are added to the first-

order accurate streamwise convective derivatives such that in the limit of A_t_0 the

streamwise convective derivatives are continuous.

This approach is based on a very simple damping model. Suppose we denote the

numerically evaluated streamwise flux derivatives as f1_¢_and the corresponding exact

value as ft,w Let us assume that the numerically evaluated convective flux derivatives

have developed an oscillation [c(_1)] of constant vector amplitude co (see Fig. D.1). In

other words

(D.1)

The basic PNS approximation for parabolic flows says that for such flows the second-

order streamwise derivatives (such as f_._m) are negligible. Thus, by differentiating Eq.

(D. 1), we can write

(D.2)

Using Eq. (D.2), we can now estimate and correct for the effects of the numerical oscil-

lation as

(fl,¢_)J+l rr* _j+l ,_ If* _j-I-I I *= _'l,_lJ -- r0 = t'l,h) -- _"fl,¢t_lA_l (D.3)

Based on this simple damping model, we choose the streamwise diffusion effects to

be of the form

Appendix D. SECOND-ORDER ACCURATE STREAMWISE DAMPING 73



(fl,_) j+l _ (fl,_)bj+l _ _fl,,_,hA_l (D.4)

where the subscript 'b' represents first-order backward-differenced approximation. The

second-order derivative to be used in Eq. (D.4) is estimated using one-sided backward-

differenced approximation

fl,¢,h - [(fl,_,)_ +1 - (fl,¢)Jq/A¢l (D.5)

The appropriate values of co appearing in the above damping model are between 0 and

1. The lower limit of _ = 0 is quite evident as it corresponds to the damping-free limit.

The upper limit of ¢o_ 1 corresponds to the limiting case of a vanishingly small step size

(A_I_0) and the requirement that the streamwise flux derivatives at the 'j' and 'j+ 1'

steps are continuous; i.e., (f1.¢1)J+_(fl.¢t) j' In the present approach, a simple linear model

is used for co such that a_--,1 as A_I--,0 and w_0 when ACt is adequately large. Thus,

the numerical accuracy of a large step-size solution is not compromised.

Figures D.2 and D.3 show sample results of some numerical tests that were done

using the aforementioned scheme. These results are for the Mach 19.2 flow over a 6-deg

sphere cone at a flight altitude of 120 kft. The nose radius (Rn) for these calculations

was 0.05 inch and the gas model used was equilibrium chemically-reacting air. The ve-

hicle geometry was 1000 Rn (50 inches) long and solutions were done with 10 Rn, 5 Rn,

2.5 Rn, 1 Rn, 0.25 Rn and 0.1 Rn step sizes, respectively. Figure D.2 shows the wall-

pressure distribution, whereas the wall heat-transfer distribution is shown in Fig. D.3.

These results show that there are negligible (if any) differences in the numerical pred-

ictions of the various step sizes. It should be noted that the form ofstreamwise damping

used in these calculations was such that the solutions with I0 Rn, 5 Rn and 2.5 Rn step

sizes had effectively no streamwise numerical dissipation effects.

The equilibrium-air PNS calculations shown in Figs. D.2 and D.3 used 50 points be-

tween the body and the shock. The solutions with 10 Rn, 5 Rn, 2.5 Rn, 1 Rn, 0.25 Rn

and 0.1 Rn step sizes took equivalent of 11 sec, 17 sec, 28 sec, 58 sec, 204 sec and 493

sec, respectively, on a Cray-Y/MP class machine. The corresponding number of axial

marching steps required for these calculations were 135, 227, 420, 1009, 3985 and 9955,

respectively.
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Fig. D.I. Schematic description of a typical streamwise oscillation
in the streamwise convective flux derivatives.
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Fig. D.2. Axial distribution of wall pressure with an equilibrium-

sir gas model.
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Fig. D.3. Axial distribution of wall heat-transfer rate with an

equilibrium-alr gas model.
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APPENDIX E. EXPRESSIONS FOR THE SPECIES
PRODUCTION TERMS

The stoichiometric relations for a multicomponent gas with NS distinct chemical

species and NR simultaneous chemical reactions can be expressed as

NJ kfr NJ

E&riXi = E_riX i

i=l kb r i=l

r = 1, ..., NR (E.1)

The quantities Xl represent the chemical species and catalytic bodies and &r+,fl_ are

the stoichiometric coefficients of the reaction 'r'. Thus the summation limit NJ is equal

to the number of species NS plus the number of catalytic bodies NZ.

The rates at which the forward and backward reactions occur are specified by the

forward and backward rate constants which can be expressed by the equations

(Co - c_¢ )
kf_=T_2_ e , xk (E.2a)

and

Dr.
TD2r e(Dor-- _)

kb r = "k (E.2b)

The net rate of production per unit volume of the i-th species during the chemical

reactions is written as

where

• NR

¢Oi -- MiE(flri-- Ctri)(Lr,- Lbr) (E.3)P
r=l

NJ

ar ----ECCrj- 1 (E.4a)

j=l
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NJ

fir = )-_j_rj- l

j=l

(E.4b)

NJ

Lr,=
j---I

(E.5a)

NJ

Lb.- kbj]Pr_I(yi)P_

j=l

where p is the mixture density in gm/cm 3.

(E.5b)

For the NS species, the molar concentrations yj, are given by the expression

Cj

YJ- Mj (E.6a)

For the catalytic third bodies the yj are given by the following expression

NS

_/j = ZZ(j-NS),i Yi, j = (NS + I, ..., N J) (E.6b)
i=l

where ZO-NS)._is the catalytic third body efficiency relative to argon, and depends upon

the reaction being considered.

The production term can be rewritten so that the species concentration appears as

one of the unknowns, and the rate of production terms are given by the expression

O) i * 0

p -- £0 i -- f_)ICi (E.7)

where

NR

.oo0, = M_ (r+Lr, + I'_Lu) (E.8a)

r----1
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NR

mi [F+( Lb, _ Lf,= + rr (T 1]
r=]

X-'r+ = (flri- gri) if (flri- _ri) > 0

= 0 if (flri -- ari) _ 0

r_i = (#ri- _ri) if (flri- 0_ri)< 0

= 0 if (flri- IXri) _ 0

(E.8b)

(E.9a)

(E.9b)

The derivative of-_-- with respect to temperature is given as

NR

CI r Dlr(flri -- ari)[(C2, + "-_-k -- °trlLf, - (D2, h Tk

r:l

where T k is the local temperature in degrees Kelvin.

flr)Lb ] (E. lO)
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APPENDIX F. TRANSITIONAL/TURBULENT FLOW
MODELING

In turbulent flow calculations, one must relate Reynolds stress terms to the mean

flow quantities in order to mathematically close the problem. The simplest approach is

a two-layer eddy-viscosity model consisting of an inner law based upon Prandtl's

mixing-length concept (Adams, 1972) and an outer law based on the Clauser-Klebanoff

(Clauser, 1954) expressions. This model (introduced originally by Cebeci, 1970) assumes

that the inner law is applicable from the wall outward to the location where the eddy-

viscosity given by the inner law is equal to that of the outer law. The outer law is then

assumed applicable for the remainder of the viscous layer. It is noted that the eddy-

viscosity degenerates to approximately zero in the inviscid portion of the shock layer.

This two-layer eddy-viscosity approach has been used in the present nonequilibrium

PNS formulation.

In order to calculate the inner eddy-viscosity (#_n) distribution, Adams (1972) ex-

tended Prandtl's mixing-length concept for two-dimensional flows to three-dimensional

flows. In this approach it is assumed that the eddy-viscosity is a scalar function inde-

pendent of the coordinate directions and can be written as

_in -- Pg'2I¢°I (F. 1)

where o_ is the local vorticity vector and Io_l is its magnitude.

evaluated by the following expression

_' = Kn[1 - exp(n+/26)]

The mixing length g' is

(F.2)

where

4-
n = pu *n/u (F.3)

Here, the von Karman constant (K) is equal to 0.4, n is the distance measure from the

wall boundary and the friction velocity u" is defined as

u* = [uw(l_l),,v/p] °'s (F.4)

For the outer region, the outer eddy-viscosity (# o) is approximated by the Clauser-

Klebanoff expression
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#o = 0"0168pUe6*Yint (F.5)

In this expression, the incompressible displacement thickness (6*) is defined as

fon u )dn6" = (l--fiT (F.6)

where 6 is the local boudary layer thickness. For the present cold-wall cases this

boundary-layer thickness is calculated using an enthalpy model. In this enthalpy model

it is assumed that appropriate value of 6 to be used is equal to the value of normal co-

ordinate 'n' where

[ho- hw]

[(ho)o - hw]
= 0.995 (F.7)

where the subscrip '0' represents total conditions. The intermittency factor (YJ,,) ap-

pearing in Eq. (F.5) is defined as

1

Yint = [I +5.5"n---6-(/a)j (F.8)

The turbulent Prandtl number and Lewis number are assumed to be 0.9 and 1.0, re-

spectively.

The distance between transition onset at x,, and the beginning of fully turbulent flow

further downstream at xr is called the transition zone. The transition model used in the

present formulation is based on the model proposed by Dhawan and Narasimha (1958).

In this model, continuous transition is effected by defining a streamwise transition

intermittency factor (y,,) which modifies the composite eddy viscosity (#,,r_) over the

transition region (xr - x,,). The factor y,, is initially set to zero and is evaluated when the

x>x,,. In the region x>x_, the streamwise intermittency factor (y,) is evaluated using the

the following relation

Ytr = [1- exp(-0.412_2)] < 1 (F.9)

where y,_has a maximum value of 1 and

= 2.96(x - Xtr)/Xtr (F.IO)

The various coefficients and parameters used in this model are based on numerical tests

and comparisons with experimental data.
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APPENDIX G. WALL HEAT-TRANSFER RATE AND
SHEAR STRESSES

Let us define the normal, streamwise and tangential vectors to a _2= constant surface

as n, s and t, respectively. These vector directions are schematically shown in Fig. G.1,

and can be expressed in terms of metric derivatives as

n = (y,hz,_3- z,_y,_3)i - x,_tz,¢3j + x,¢tyz,_3k

s = x_ i + Y,_3 J + zy,_ 3 k

t = i Y,h J + zy,h k

(G.1)

where i, j and k are unit vectors in the x, y and z coordinate directions, respectively.

The directional derivative of any quantity '_b' in the direction of n is given as

n nk nk_j, xk

_b'n = In--T".V_b - Inl _' xk - Inl _b._j (G.2)

where n ,, n 2 and n 3 are the components of vector n in the x, y and z directions, re-

spectively. The required _t and _2 derivatives at the wall can be calculated using one-

sided difference approximations, while the _3 derivatives can be calculated using

central-difference approximation. Accuracy of the derivatives in the Ca direction can be

enhanced by using higher-order (three-point or more) difference formulas. In calculating

these coordinate derivatives, it should be noted that the computational grid is equally

spaced in terms of the _1, _ and _3 coordinates.

The component of wall heat-transfer due to conduction (Q_,d), and the component

of wall heat transfer due to species diffusion (Qd,rr) are defined as follows.

* 0T
Qcond = - k(_)w (G.3)

NS
° _ #Le _C i

ediff = -- _-_L _ hiw _ ]w (O.4)
i=l

The total wall heat-transfer rate (Q,o,) at the wall is a sum of these two contributions.
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Fig. G.I. Schematic description of the normal and tangentlal vectors

for a _2=constant surface.
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APPENDIX H. AERODYNAMIC FORCES AND
MOMENTS

Let us define the normal, streamwise and tangential vectors to a G = constant surface

as n, s and t, respectively. These vector directions can be expressed in terms of metric

derivatives as

n -- (ydlz,h- z,¢_y,¢3)i - x,¢iz,h j + x,¢ffz,hk

s = x,h i + Y,h J + zy,h k

t = i Y,¢3 J + zy,h k

(H.1)

where i, j and k are unit vectors in the x, y and z coordinate directions, respectively.

With the n, s and t directions defined as above, we can write the components of the

force vector due to pressure (Alp), due streamwise skin-friction (Af,) and due to cross-

flow skin-friction (Af,) as

['AA s

Afp = -I (P-Poo)_dA (H.2)
v0 iill

and

fAAs $

Af.= J0 (H.3)

f AAs t

Aft = J0 zt =_= dA (H.4)

where z, is the streamwise wall-shear stress, _t is the crossflow wall-shear stress and

AA, is the surface area of the body between the current and previous marching steps.

Similarly we can define the component of the moment vector as

fajoA,(rxAfp + rxAfs + rxAft)dAAmt

where r is the local position vector defined as
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r = xi + yj + k (H.6)

Ifj represents the previous marching step and j + 1 represents the current marching step,

the total force vector (f) and the total moment vector (m) at the current step become

fj+l = fj at- Alp 4- Af s -4- Af t

(H.7)
m j+t = mj + Amp + Am s + Am t

Once the force and moment vectors are known, the force and moment coefficients can

be obtained. Figure H.1 shows a schematic description of the positive direction of the

force and moment coefficients relative to the Cartesian coordinate. The axial-force co-

efficient (C A), the normal-force coefficient (C N) and the pitching-moment coefficient (C

m) become

f×
CA- (qooAc) (H.8)

CN = (qooAc) (H.9)

and

my

CM = -- (qooAcx) (H.10)

where fx and f, are the x and z components of f+l, m y is the y component of m J÷l, A c is

the local cross-sectional area, and q,. is the freestream dynamic pressure. From Fig.

H.I it can also be seen that the lift coefficient (C L) and the drag coefficient (C D) can

now be expressed as

C D --- CACOS0t + CNSinct

CL =_CASint x + CNCOSc t (H.11)

Appendix It. AERODYNAMIC FORCES AND MOMENTS 87



M
OO

Z

CL
CN

CD

CA

L

X

Fig. H.I. Schematic description of the positive directions for the

force and moment coefficients.
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APPENDIX I. A MODEL DIFFERENTIAL/ALGEBRAIC
MARCHING PROBLEM

The system of equations represented by the governing PNS equations is not a pure

differential system, it consists of five partial differential equations coupled through a

sixth equation which is a purely algebraic relation. In the present treatment this set of

governing equations is referred to as a 'differential/algebraic system'. The most impor-

tant view point to be presented in this section is that the character classification of a

differential/algebraic system is significantly different from the classical character classi-

fication of purely differential systems. In other words a purely differential system has a

certain character; i.e., it is either elliptic or time-like or mixed. By 'time-like' we mean

that a differential system is either hyperbolic or parabolic or mixed hyperbolic-parabolic.

However, as long as the differential system is time-like, the numerical solution can be

marched in the time-like direction. On the other hand, if the differential system is elliptic

in character, marching-like numerical solutions are invalid.

The case of the differential/algebraic systems is, however, quite different. For such

differential/algebraic systems the overall character of the system may depend upon the

way in which the problem is formulated. That is to say, it may be possible to have a

differential/algebraic system as elliptic or conditionally elliptic if one formulates the

problem in one way, and have it unconditionally marching-like if one formulates the

problem in another way. This idea is new and has given rise to a fair amount of con-

troversy. Nonetheless, it may be analytically demonstrated on a model mixed-type sys-

tem.

Consider the following system involving 3 unknowns, 4,_, 4,2 and 4,3; i.e.,

4,1, -  2,y= 0

4,2,x -- 4,l,y q- 24,2,y + 4,3,y = 0

a24,1- 4,3=0

(I.1)

with initial condition specified at x = 0 and boundary conditions specified at y= 0 and

at y= 1. Suppose we consider the following initial and boundary conditions:

4,3(0,y) = a24,1(0,y)

4,1(0,y) = 4,2(0,y) = y
(I.2)
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and

_b3(x,0) = a2_bl(x,0)

t_l,y(X,O) = t_2,y(X,O) = 1

_b3(X,1) = a2_bl(x,1)

4_(x,l) = I + x

_2(x,1) = 1 - (a 2 +l)x

(I.3)

(I.4)

The solution to Eqs. (I.1) for these boundary conditions [Eqs. (I.2), (I.3) and (I.4)]

is (Bhutta and Lewis, 1985d)

ffl(x,y) = y + x

_b2(x,y) = y - (a 2 +l)x

_b3(x,y ) = a2(y + x)

(I.5)

The above model problem resembles the inviscid limit of the governing PNS

equations. The model problem involves only first-order derivatives in the two spatial

coordinate directions to simulate the convective derivatives of the inviscid limit of the

PNS equations. The third equation of this model problem is an algebraic relation, and

is used to simulate the role of the algebraic equation of state in the PNS equations. Just

like the equation of state in the governing PNS equations, the algebraic relation of the

model problem appears not only as a relation to be satisfied within the solution domain,

but it also appears in the initial conditions and the boundary conditions. The variable

_b3 of the model problem plays a similar role as played by pressure in the governing PNS

equations. Now consider the following two different formulations of the model problem.

1.1. Formulation I

In this approach we can substitute the third equation of Eq. (I.1) into the second

equation and obtain

Or we may simply write

(bl, x - (b2,y-_-0

_b2,x+ (a 2 - l)_bl,y + 2_b2,y= 0

q_x+ A • _y = 0
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where

and the eigenvalues of A are

= I-@1, @2-1v (1.8)

(I.9)

It is shown by Bhutta and Lewis (1985d) that we can write Eq. (I.7) as

_//!,x nt"21@l,y = 0

@2,x+ )-2@2,y = 0

where

(I.lO)

@l = @z + @2

@2 = -'tl _'l - )-2@2 (I. I 1)

Thus, we see that Eqs. (I.10), and equivalently Eqs. (I.6), are time-like if A_ and 22

are real (a2<2). When 2_ and/! 2 are not real (a2>2), Eqs. (I.6) and (I.10) are elliptic in

nature. In other words, a marching-like solution of Eqs. (I.6) will be valid only if a _

<2. Furthermore, it has been shown by Bhutta and Lewis (1985d) that for a2<2 the

analytic solution to Eqs. (I.6) can be found, and it is the same as given by Eqs. (I.5).

1.2. Formulation II

From the earlier discussion on Formulation I of the model problem, we see that the

variable "a' of the model problem is like the speed of sound in the governing PNS

equations. That is to say, in the classical PNS schemes where the speed of sound ap-

pears in the eigenvalues through the pressure terms and the accompanying equation of

state (Schiff and Steger, 1979, and Shanks et al., 1979), in the model problem the vari-

able 'a' appears in the eigenvalues through the variable @3 and the corresponding alge-

braic relation. Now, for this model problem, if we can devise another formulation such

that the variable 'a' no longer contributes to the eigenvalues of the system, it may pro-

vide us with a key to attempt a similar treatment of the governing PNS equations. Such

a re-formulation of the model problem is mathematically possible, and it will be called

Formulation II.
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In the aforementioned Formulation I, the overall differential/algebraic system was

reduced to a pure differential system. In Formulation II we attempt to solve directly the

actual differential/algebraic system [Eq. (I. 1)], and look at the character of the resulting

system. At first glance it does not seem likely to be able to do that. However, it is

possible to do such an analysis if one looks at Eq. (I.1) as the limiting case of a small-

perturbation problem. Such an approach is valid as long as the small-perturbation

problem being considered allows us to take this limit without any singular behavior.

For this purpose, consider the following problem (were e > 0)

_l,x- _2,y = 0

_2,x- _l,y +2_2,y + _3,y= 0

_¢3,_= a2¢z- ¢3

(I.12)

with

¢l(O,y) = y

¢2(0,Y) = y

¢3(0,y) = a2y

(I.13)

¢l,y(x,O) = 1

¢2,y(X,O)----- 1

_¢3,x(X,O)= a2¢_(x,O)- ¢3(x,0)
(I.14)

and

¢_(x,l) = I + x

¢2(x,1) = 1 - (a 2 +l)x

tf3,x(X,1 ) = a2¢l(x,1) -- ¢3(x,1)

(I.15)

Thus, the small perturbation problem being presented has the correct initial condi-

tions, and the boundary conditions at y= 0 and y= 1 are consistent with the governing

equations [Eqs. (I.12)].

The complete solution of this problem is given by Bhutta and Lewis (1985d).

ever, briefly speaking, Eqs. (I.12) can be written as

% + A • @y - (l/e)B • q_= 0

The eigenvalues of A are

How-

(I.16)
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/11 = 1 +.if2 -

/!2= I -.4_-

23 = 0

It is shown by Bhutta and Lewis (1985d) that we can write Eqs. (I.16) as

_,x+/1_,y -/12(f/_)= 0

¢2,x+/12_2,y+/1_(f/_)= 0

¢3,x- (/1!-/12)(f/_)= 0

where

f= I-a2(_bl + if2) + (a2 -1)ff311(/11 -/12)

and

_2 = -/11ff_ -/12¢'2
&3= ¢'3

(i.17)

(I.18)

(i.19)

(I.20)

Since /11 and /12 are real [see Eqs. (I.17)], we can see that Eqs. (I.18) are uncondi-

tionally time-like, and a marching-type numerical solution of Eqs. (I. 18) will be uncon-

ditionally valid.

In order to answer the question, "How does the small perturbation problem of Eqs.

(I.12) relate to the original problem of Eqs. (I.1)?", we can see that under the limiting

condition

e--,O + (1.21)

Eqs. (I.12) reduce to Eqs. (I.1), and the boundary conditions given by Eqs. (I.14) and

(I.15) reduce to the actual boundary conditions given by Eqs. (I.3) and (I.4). The initial

conditions are the same anyway.

A question arises --- "Is it valid to take the limit of Eqs. (I.18)?", or in other words

"Does Eqs. (I.18) behave singularly because of the 1/_ factor?" To answer this question,

the third equation of this system [Eqs. (I. 18)] shows that for all

f/_" = _3,x1(/11 -/12) (I.22)

In other words, Eq. (I.22) indicates that 'f/e' is always defined, if ff3_ is defined for e_>0.
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The demonstration that _%, is bounded for e>0 [i.e., Eqs. (I.18) is not singular when

--* 0*], comes from the actual analytic solution of Eqs. (I.18). It is shown by Bhutta

and Lewis (1985d) that the analytic solution to Eqs. (I.18) and (I.20) is

¢l(x,y) = y + x

¢2(x,y) = y - (a 2 +l)x

¢_(x,y) = a2(y + x) - a2t[l - exp( -x/t)]

(I.23)

where

> 0 (I.24)

It should be noted that we are marching in the x direction, so that our x is always

positive and increasing. Thus, we see that with e--*0+, Eqs. (I.22) does not appear to be

singular [or, equivalently Eqs. (I.22) does not appear to be singular] and, furthermore,

this solution seems to be valid even for e = 0 (Bhutta and Lewis, 1985d). Also, we see

that with e_0+, the solution to our hypothetical small perturbation problem appears to

correctly approach the solution to our actual model problem; i.e.,

¢I(x,y)=y+x

¢2(x,y)=y-(a2+l)x

¢3(x,y)---,a2(y+x)

(I.25)

The aforementioned mathematical exercise is only used to present the conclusion ---

There exist a class of 'differential/algebraic' system-of-equations where it is possible to

have a conditionally time-like behavior if one formulates the problem in one way, and

it is also possible to have the same problem as unconditionally time-like if one formu

lates the problem in a slightly different manner.

The model problem [Eqs. (I.1)] presented herein, bears considerable similarity to the

inviscid limit of the governing PNS equations. The classical treatments of these PNS

equations (Schiffand Steger, 1979; Vigneron et al., 1978; Shanks et al., 1979; etc.) cor-

respond to the Formulation I presented earlier, which was conditionally time-like. The

present scheme, however, follows the approach of Formulation II, which had an un-

conditionally time-like character.
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1.3. Numerical Solution of the Model Problem

The key point to be understood before attempting a solution of the model problem

is that this model problem does not have an asymptotic limit; i.e., the solution grows as

one marches on. Also, for this problem the equations governing the propagation of er-

rors are the same as the governing equations. Consequently, the errors also convect and

grow as the solution marches away from the initial conditions. This in itself is not a big

problem because if the problem were only limited to this, the solution and associated

errors grow at comparable rates and the relative error (which is actually the important

quantity) does not change much. However, the problem with truncation errors is that

these errors not only convect and grow (as dictated by the governing equations), but at

each step the cause for the generation of numerical errors remains there and keeps on

adding to the existing errors. Thus, the net effect of this is that the growth of truncation

errors is faster than the actual growth of the solution itself, and if one does not control

these errors they can (and will) become large enough to start affecting the solution.

It is important to note that the solution in the y-coordinate direction is not only the

initial source of truncation errors, but also the subsequent reason for their increased rate

of growth (because at each step it adds to the existing error). Thus, it should be clear

that the growth of these truncation errors is actually governed by the number of times

the y-solution (and associated truncation errors) are committed. In other words, the

errors will grow more rapidly if one takes smaller steps and, thus, commits a larger

number of times the y-solution and the associated errors. This could be wrongfully in-

terpreted as a step-size (departure) problem, but the fact remains that the step-size has

nothing to do with the actual cause of the problem which is simply the inaccuracies in

doing the numerical solution.

A clear advantage of an analytic solution of the problem (if possible) is that it does

not suffer from solution inaccuracies and presents the true picture. Furthermore, when

using numerical solutions to either validate or contradict analytic analysis, it is essential

that either the numerical truncation errors be eliminated or controlled before one can

focus on anything else as the potential source of any problems with the numerical sol-

ution.

In the following sections we will consider two different approaches to the numerical

solution of Eqs. (I.1). The first approach will use an explicit Lax method (Anderson et

al., 1984), and will focus on controlling the growth of errors at a marching step. In the
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second approach we will use an implict bidiagonal scheme and will focus on the elimi-

nation of truncation errors. Thus, by controlling/eliminating the truncation errors, we

will obtain numerical solutions which will truely reflect the character of the governing

equations and not the effects of numerical inaccuracies.

The explicit Lax method has been used for the t = 0 case only, while the bidiagonal

implicit method has been used for zero and nonzero values oft. The main thrust of our

numerical study is the bidiagonal implicit scheme because it is the most accurate. On

the other hand, the explicit Lax method (although less accurate) is also interesting be-

cause the solution procedure is identical to the one used for a classical two-dimensional

wave propagation problem, and the stability constraint obtained is comparable to the

classical CFL condition.

1.3.1. Explicit Lax Method

This approach is modeled after the Lax method for solving a linear first-order

hyperbolic set of equations (Anderson et al., 1984, pp. 78). In this method the x-

derivatives are forward differenced, so that the y-derivatives become explicitly known

from the previous marching step. At the same time the solution values at the previous

marching step are averaged, which is an O(Ay 2) approximation. The idea for this ap-

proach is that by avoiding the implicit solution in the y-direction we substantially reduce

and limit the generation of numerical truncation errors. Furthermore, in this case an

eigenvalue analysis can be performed on the error-propagation equations to obtain a

constraint condition which theoretically limits the growth of errors. Since numerically

at each step we still cause a truncation error (however small), the actual errors still grow

in magnitude, but this growth is extremely small if we maintain the stability constraint.

The important thing to note about this method is that for a given step size in the

y-direction (Ay), there is only an upper bound on the marching step size (Ax) and not a

lower bound which would have implied the classical departure-like behavior. As for the

upper bound on the marching step-size, a similar analysis of the wave equations also

gives an upper bound, which is the classical CFL condition (Anderson et al., 1984, pp.

78). Thus, this upper bound on the marching step-size is consistent with the classical

treatments of true marching problems.

If we denote the x-direction by the superscript T and the y-direction by the super-

script 'j', the Eqs. (I.1) take the form
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i,j--I

o + )
_a 2

i+l ,j

1 _b2 = (1/2) (

o 63

--Ax 1 2

0

i,j+l

_tI] i,j

4'2

63
,Y

(I.26)

where we have used forward-differenced approximations for the x-derivatives and an

averaging of the solution at the previous (i-th) marching step. Furthermore, we make

use of the fact that the solution at the previous (i-th) marching step is correctly known

and satisfies the following algebraic relations (which come from the governing equations

applied at the i-th step):

_i,j+l ---- a2 bil, J..<-i.3

_b_,j-, 2-i,j-i (I.27)=a<p I

Thus, the Eqs. (I.26) reduce to simply the following

¢h = (1/2) ( +

l-+,l t'j+'

(I.28)

and

_+1, j _2.i+l,j= a 91 (I.29)

where k=(Ax/Ay). The numerical solution of the above system is simple as all the

quantities on the right-hand side of Eqs. (I.28) are known from the previous step and the

values of _bt _+l.j and +b2t+1.j can than be explicitly obtained. Once q5z i+,.j is known, the

value of _b3_+"J is obtained from Eq. (I.29).

Suppose we denote the errors in if, and q52 by E, and E2, respectively. An error

analysis of Eqs. (I.28) can be performed ifwe assume these errors to be of the form

Et+I = ei+l exp[-iky]1

Ei+i _i+l exp[-iky]1 ---- el
(I.30)
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and look at the amplification of the amplitudes of these errors (i.e., e_ and e 2) as we

march in the x direction (Anderson et al., 1984, pp. 78). A Fourier analysis of the error

equations can now be performed and shows that error amplitudes will not grow if

where

Ik2(J + d 2) + dk[ < 1 (I.31)

(c + id) = 1 + (2 - a2) °'s (I.32)

Further simplification shows that the constraint of Eq. (I.31) reduces to the following

constraint on k= Ax/Ay; i.e.,

Ik - 1%1 < [k02+ 1/(c 2 + d2)]°'5 (I.33)

where

k0 = -d/[2(c 2 + d2)] (I.34)

This constraint condition gives an upper bound on the choice of "k' (k re,x) or, equiv-

alently, an upper bound on Ax for a given choice of Ay.

Figures 1.1 to 1.3 show the results obtained with the aforementioned explicit algo-

rithm. These results are for a choice of a 2- 10 which corresponds to k re,x= 0.2. Two

cases have been considered. Case 1 uses Ay=0.1 and Ax=0.001 (k=0.01), and Case 2

is for a choice of Ay=0.05 and Ax=0.001 (k=0.02). In other words, Case 1 uses 11 grid

points in the y direction and 5000 marching steps in the x direction, while Case 2 uses

21 grid points in the y direction and 5000 marching steps in the x direction. Figures I. 1,

1.2 and 1.3 show the _b;, _b2 and _b3 solution at y= 0, respectively. For both cases the

solution was carried out until x = 5.0, at which location the maximum error in both sol-

utions was of the order of 10-_. For these cases the truncation errors at the first

marching station were of the order of 10- 3z-10- 32. Figure 1.4 shows the effect of vio-

lating the stability constraint (for this case) of k,,_=0.2. It shows solutions for

Ay=0.1 and for Ax values of 0.001, 0.005, 0.01, 0.02 and 0.1 (11 grid points in the y di-

rection and 5000, 1000, 500, 250 and 50 steps, respectively, in the x direction). These

values correspond to k values of 0.01, 0.05, 0.1, 0.2 and 1.0, respectively. It can be seen

that for large values ofk (> 0.2) the maximum errors start to increase quite rapidly.
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1.3.2. Bidiagonal Implicit Method

The idea behind this approach is to eliminate the numerical truncation errors result-

ing from the floating-point roundoff (especially during the division operations). Multi-

plication by whole numbers and addition/subtraction operations do not contribute to

the roundoff errors as much as the division operation by numbers with decimal fraction

parts. Thus, the most desirable case would be to either have no division operations or

at worst have division by whole numbers such as 2, 4, 5, etc. (because division operations

for such numbers can be done exactly for almost all cases). One way of achieveing this

would be to (if possible) do as much of the algebra by hand as possible (such as matrix

inversions, multiplications, etc.) and adjust the various solution parameters such as to

have either no divisions or divisions by numbers such as 2, 4, 5, etc. Fortunately, in the

case of this model problem this is possible to do. In order to do so in the following

discussion we will focus on the case of a 2 = 3 and for k= Ax/Ay= 0.5. The choice of

these variables is solely based on the algebra simplification they introduce, and this

makes the following analysis simple.

For the purely differential problem of Eqs. (I.12), we note that if we use one-sided

(forward) difference operators for the y-derivatives, the solution at a given marching step

can be integrated downwards from the specified boundary conditions at the y= 1

boundary toward the y= 0 boundary, where the solution can be obtained using the im-

plicit boundary conditions of Eqs. (I.14). This method would in general be O(Ay) ac-

curate; however, it will be exact for solutions having a linear behavior in y-direction.

With such forward-difference approximations for the y-derivatives and backward-

difference approximations for the x-derivatives, Eqs. (I.12) take the following form (for

a2= 3 and Ax = 0.5Ay):

i+l ,j i+l ,j+l i,j

I 0 I _b2 -- I-2-I q_2 + 02 _2 (1.35)

-3-I(I+_) _b3 0 0 0 _b3 O0 _b3

where _= t/Ax. These equations are further simplified by doing the associated matrix

inversion and using the information that

(1 + _)4,_+''j+1 = 3_b_ ''j+l + _b_ 'j+' (I.36)

The use of Eq. (I.36) is correct because the solution progresses in the decreasing 'j' di-

rection (decreasing y), so that while solving for the solution at (i+ 1,j) grid point the
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solution at (i+ 1,j + 1) grid point has already been obtained and satisfies Eqs. (I.35) ap-

plied at the (i+ l,j + I) grid point. In other words, Eq. (I.36) is simply the last equation

of Eqs. (I.35) when applied at the (i+ 1,j+ 1) grid point. At the y= 1 boundary, Eq.

(I.36) is simply the differenced form of the boundary condition on _b3[see Eqs. (I. 14)].

as

where

With the abovementioned operations the solution at (i + 1,j) grid point can be written

_bi+l, J
2

qSil+''j= _bil+''j+l + k,(qb2+l'j+l - qS_j) + k2(_ 'j+l -tx_ j) (I.37)

_ i, j+l
= _k3_bil+l,j+l + _+l,j+l + 2(t_il, j + _b_j ) _ k4(3t_i?l,j t_ 'j + _ba ) (I.38)

_bi+l' J k5_+l, J ' .3 = + k4_b_ J (I.39)

k I = 2(l+a)/(2-a)

k2 = _/(2-_)

k 3 = (2-a)/(l +_)

k4 = a(1

k s = 3/(1+_)

(I.40)

The values of these coefficients (k t, k 2, k 3, k 4 and k 5) for ct= 0, 1 and 3 (e = 0, Ax

and 2Ax, respectively) are given in Table 1.1. As can be seen from this table, for 0t= 0

the coefficients are whole numbers and no division operations are involved while for

0_= 1 and 3 only division by 2 and 4 is involved which introduces minimal errors (if any).

Solutions were obtained with different grids for the cases of a = 0 and 1. Figures 1.5 to

1.7 show the solutions for the _=0 case, while Figs. 1.8 to 1.11 show the solutions for

the _ = 1 case.

Figures 1.5, 1.6 and 1.7 show the solutions for _bl, _b2 and _b3 at y= 0 for the case of

0t= 0. Solutions were obtained with Ax values of 0.0025, 0.005, 0.01, 0.025, 0.05 and 0.10

(corresponding to 6, I 1, 21, 51,101 and 201 grid points in the y-direction and 4000, 2000,

1000, 400, 200 and 100 steps, respectively, in the x direction). In each case the solution

was marched from x= 0 to x= 10, and the numerical results showed that for all these

cases the solution error was exactly zero at all stages of marching. This is indeed to be

expected, because the exact solutions are bilinear space functions [Eqs. (I.5)], and for

such bilinear functions one-sided differences in the x and y directions are mathematically

exact. It is important to note that these solutions have been obtained by putting 0t= 0
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in the differenced form of Eqs. (I.12). No singular behavior or associated numerical

difficulty was encountered in doing so, and the solution was the exact bilinear solution

to the differential-algebraic system of Eqs. (I.1). This confirms the earlier conclusion

that the Eqs. (I.1) are the true limiting case of Eqs. (I.12) with e= 0, and that this limit

is valid and can be taken without any singular behavior.

The solutions ¢_, ¢5 and ¢3 at y=0 and for a= I are shown in Figs. 1.8, 1.9 and 1.10,

respectively. Solutions are presented for Ax values of 0.10, 0.025 and 0.01, correspond-

ing to Ay values of 0.2, 0.05, and 0.02, respectively (corresponding to 6x100, 21x400 and

51x1000 grid points, respectively). The results show that the solutions for ¢_ and _2 are

exact, while the solution for _3 is not exact. However, it can be seen from Fig. 1.10 that

with decreasing Ax the numerical solution of _3 starts approaching the exact solution.

This behavior is explained by the fact that the actual solution of _3 for e > 0 has a non-

linear exponential behavior in the x direction, which can not be properly modeled by a

simple backward-differenced approximation of the _3 _ term. However, this modeling

improves as the marching step size (Ax) is decreased, and this is exactly the behavior

shown by the numerical results for _3. The analysis presented in Section 1.2 had shown

that the solution of¢, and _2 for nonzero values of a (or equivalently e) were composed

of bilinear space functions. The numerical solutions of these variables do give the exact

bilinear space variations and, thus, confirm the analytic solution of Eqs. (I. 12) obtained

in Section 1.3. Figure I.l 1 shows the percentage error in the solution of¢3 for the three

different step-size distributions that were tried. This clearly shows the improvement in

accuracy obtained by a decreasing sequence of marching step sizes.

It is worth pointing out that we also attempted a solution of the aforementioned

e=O case in which we numerically inverted the matrices rather than using the afore-

mentioned coefficients (kl to k 5). In principal there should have been no difference in

these two treatments; however, such was not the case. We tried the case with Ax= 0.01

and found that solution suffered from truncation errors which grew in magnitude as the

number of marching steps increased, and after a couple of hundred steps these errors

significantly degenerated the solution accuracy. Again, the only difference between this

calculation and the similar calculation using Eqs. (I.37-I.39) was the numerical accuracy

of the solution, and had nothing to do with the character of the governing equations

which remain time-like.
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1.3.3. Concluding Remarks on the Numerical Solution

Based on the results of this study following conclusion have been drawn.

(a) The results of this numerical study confirm the analysis of Bhutta-Lewis model

problem. These results show that the solution of the Bhutta-Lewis model problem

can be properly and accurately marched, provided one controls or eliminates the

numerical errors and maintains solution accuracy.

(b)

(c)

The numerical results confirm that the model differential-algebraic problem is the

true limiting case of a purely differential system with an unconditional time-like

character. This limit can even be taken numerically without any singular behavior,

and this limiting solution is the correct solution to the model differential-algebraic

problem.

For marching problems which do not have an asymptotic limit, it is important to

control the growth and generation of truncation errors. These truncation errors

not only convect and grow in the same way as the actual solution, but in addition

to this new truncation errors are also generated at each marching step. Conse-

quently, the rate of growth of these errors may be more than the rate of growth of

the actual solution. Thus, after a sufficient number of marching steps, these errors

may become large enough to substantially degenerate the solution. In other words,

in case of an inaccurate numerical algorithm the smaller the marching step-size, the

larger the number of times we have to do an inaccurate solution in the y direction

and, thus, the larger the number of times we cause the numerical errors to generate.

This behavior could wrongfully be thought of as a problem caused by the small

step-size; whereas, the small marching step has nothing to do with the problem ex-

cept that by doing so the numerical inaccuracies start affecting the solution much

sooner. The real solution to these problems lies not in the step-size manipulation,

but in improving our solution accuracy and limiting or eliminating associated nu-

merical truncation errors.
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Table I.I. Coefficients of the Bidiagonal Implicit Scheme

Coefficients of the

Bidiagonal Scheme

k ik Ik Ik Ik
iI 21 31 41 5

0 I 1 1 0 1 2 1 0 1 3
......... I .... I .... I .... I .... I ....

1 I 4 1 1 1 1121 1121 312
......... I .... I .... I .... I .... I ....

3 I -B I -3 1-1141 3/41 3/4
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KEY:

o CASE 1

A CASE 2
(Ay=0.10, Ax=0.001, k=0.01, a2=10, _=0)

(Ay=0.05, Ax=0.001, k=0.02, a2=10, _=0)

+

I I ] i I #

0
!

I I I I I
1.43 2.14 2 .eG 3.57 4.29 5.00

X

Fig. I.I. Solution for _l(X,y=O) with the Lax method for the case
of a2=10 and _=0
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KEY:

o CASE I

A CASE 2

(Ay=0.10, Ax=0.001, k=0.01, a2=10, _=0)

(Ay=0.05, Ax=0.001, k=0.02, a2=I0, _=0)

N
÷

W

!
bJ-

O

'k
X

e4

I

7
W--

N
!
W

1.00

I i i I i i

I I I f I I
0.71 1.43 2.14 2.86 3.57 4.29

X
.00

Fig. 1.2. Solution for @2(x,y=0) with t_e Lax method for the case
of a2=10 and t=O
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KEY:

o CASE 1

A CASE 2

(Ay=0.10, Ax=0.001, k=0.01, a2=10, _=0)

(Ay=0.05, Ax=0.001, k=0.02, a2=10, _=0)

o

'k

%.#

¢_

N

W

o
W--

7

I I I I I I

hi o

N
!

'" °I } { I { {"or, 08 .71 1.43 2.14 2.86 3.5"7 4.29

X
s.oo

Fig. 1.3. Solution for 43(x,y=0) with the Lax method for the case
of a2=10 and e=0
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KEY:

o k=0.01

A k=0.05
+ k=0.10

x k=0.20

k=l.00

(Ay=0.10, Ax=0.001, a2=10, v=0)

(Ay=0.10, Ax=0.005, a2=10, r=0)

(Ay=0.10, Ax=0.010, a2=10, _=0)

(Ay=0.10, Ax=0.020, a2=10, _=0)

(Ay=0.10, Ax=0.100, a2=10, _=0)

I I I I I I

Explicit Lax Method

5.00

Fig. 1.4. Effect of increasing the ratio k=Ax/Ay on the maximum

absolute error in 4 3 .
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KEY:

o Ax=0.0025

A Ax=0.0050

+ Ax=0.0100

x Ax=0.0250

Ax=O.0500

Ax=O.lO00

(Ay=0.0050, k=0.50, c=0, a2=3)

(Ay=0.0100, k=0.50, _=0, a2=3)

(Ay=0.0200, k=0.50, t=0, a2=3)

(Ay=0.0500, k=0.50, t=0, a2=3)

(Ay=0.1000, k=0.50, _=0, a2=3)

(Ay=0.2000, k=0.50, _=0, a2=3)

Y,

o
W-

7

o

'k

¢q
!

W"

!

hJ

}.O0

Fig. I.5.

b

I I I sl.vl I I].43 2.86 4.29 "7.14 e .57

X
LO.O0

Solution for @l(x,y=O) with the bldiagonal implicit method
for of a2=3 and _=0 (==0)

Appendix I. A MOI)EI. DIFFERENTIAI,/AI,GEBRAIC MARCIIIN(; I'ROBI.EM 108



KEY:

o Ax=0.0025

A Ax=0.0050

+ Ax=0.0100

x Ax=0.0250

Ax=0.0500

& Ax=O.lO00
I

(Ay=0.0050, k=0.50, _=0, a2=3)

(Ay=0.0100, k=0.50, _=0, a2=3)

(Ay=0.0200, k=0.50, _=0, a2=3)

(Ay=0.0500, k=0.50, t=0, a2=3)

(Ay=0.1000, k=0.50, _=0, a2=3)

(Ay:0.2000, k=0.50, _=0, a2=3)

Q

'k

N.w

I

N

laJ

7

=-q

N
I

"_0 .IX

! i I i I I

]1.43 21.e6 41.2s _l.vl "11.14 el.s?
X

1 .{_

Fig. 1.6. Solution for _2(x,y=O) with the bidiagonal implicit method
for of a2=3 and _=0 (==0)
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KEY:

o Ax=0.0025

A Ax=0.0050

+ AX=0.0100

x" AX=0.0250

Ax=0.0500

AX=0.1000

(Ay=0.0050, k=0.50, _=0, a2=3)

(Ay=0.0100, k=0.50, E=0, a2=3)

(Ay=0.0200, k=0.50, _=0, a2=3)

(_y=0.0500, k=0.50, r=0, a2=3)

(Ay=0.1000, k=0.50, _=0, a2=3)

(Ay=0.2000, k=0.50, _=0, a2=3)

x"
v

N

W

i-

o
td-

7
W-

N

e4
!

W"

--{

i I i ! I I

I

'" I I I I.?1 71. I"0.00 1.43 2.86 4.29 5 14 8.57
X

0.00

Fig. 1.7. Solution for 43(x,y=0) wlth the bldlagonal implicit method
for of a2=3 and E=0 (a=0)
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KEY:

o Ax=0. 010
A Ax=0. 025
+ Ax=0. 100

(Ay=0.02, k=0.50, t=Ax, a2=3)

(Ay=0.05, k=0.50, t=Ax, a2=3)

(Ay=0.20, k=0.50, r=Ax, a2=3)

ha

v

lJ.

7
W-

N
!
laJ

-0 oo 11.43 2l.a8 41.29 51.71 7I.14 ol.sv 1o.oo
X

Fig. 1.8. Solution for &l(x,y=0) with the bldlagonal implicit method
for of a2=3 and t=Ax (==I)
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KEY:

o Ax=0.010

A Ax=0.025

+ Ax=0.100

(Ay=0.02, k=0.50, e=Ax, a2=3)

(hy=0.05, k=0.50, _=Ax, a2=3)

(AY =0.20, k=0.50, e=Ax, a2=3)

I I I I ! !

7

0

X

N

I
!

Fig. 1.9. Solution for ¢2(x,y=0) with the bidiagonal implicit method
for of a2=3 and e=Ax (==i)
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KEY:

o Ax=0.010

A Ax=0.025

+ Ax=0.100

(Ay=0.02, k=0.50, _=Ax, a2=3)

(Ay=0.05, k=0.50, _=Ax, a2=3)

(Ay=0.20, k=0.50, e=Ax, a2=3)

W

I I I I I I

11 I I I I I.43 2.86 4.29 5.71 7.14 8.57 10.00
x

Fig. I. 10. Solution for _3(x,y=0) with the bidiagonal implicit method
for of a2=3 and _=Ax (==1)
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KEY:

o Ax=0. 010

A Ax=0. 025

+ AX=0. 100

(Ay=0.02, k=0.50, _=Ax, a2=3)

(Ay=0.05, k=0.50, _=Ax, a2=3)

(Ay=0.20, k=0.50, E=AX, a2=3)

I I 1 i I I

N
!

":o.oo 11.43 21.86 41.29 sl.vl 7I.14 81.57 10.00
X

Fig. I.II. Improvement in the solutlon of @3 by decreasing the

marching step size (A=x) for a2=3 and _=Ax

(==1) and using the bidiagonal implicit method
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APPENDIX J. SOME IMPORTANT ASPECTS OF
PRESENT 3-D PNS SCHEME

J.1. Distinction from Classical PNS Approaches

Our 3-D PNS scheme is very different from any available PNS scheme, not only

in terms of the enhanced solution accuracy it offers, but even the basic formulation

is based on a completely new and inovative approach. It is important to mention

that the original development of our PNS scheme (Bhutta and Lewis, 1985a-d) was

motivated to address several numerical accuracy and instability problems suffered

by existing PNS methodology. Before developing our own PNS approach to answer

these problems (without making substantial approximations) we had extensively

used many of the classical PNS solution schemes (Shanks et al., 1979; Helliwell et

al., 1980; Lubard and Helliwell, 1973). The following table gives a good overview

of the differences between our 3-D PNS scheme and the classical noniterative PNS

approaches (Schiffand Steger, 1979; Shanks et al., 1979; Kaul and Chaussee, 1983;

Vigneron et al., 1978; etc.).

Our PNS Scheme Classical Noniterative PNS Approaches

(1) Solves a differential/algebraic

system of equations.

Solution Scheme

Solve a purely differential system

of equations.

(2) Fully conservative solution in

the limit of convergence so that

two-point streamwise differencing

is adequate and the memory require-

ment is less.

Nonconservative errors need to be

compensated by using special three-

point streamwise operators,

requiring larger computer memory.

(3) Involve a fully-iterative

solution scheme.

Accuracy

Involve a noniterative solution which

is only the first guess of the true
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solution.

(4) Satisfies global as well as

differential conservation of mass,

momentum and energy to within a

user-specified accuracy.

Typically have large global conserva-

tion errors.

(5) The solution scheme has a fully-

implicit pressure treatment and

does predict possible axial separa-

tion across strong compression dis-

continuities.

Due to the pressure approximations

caused by the use of sublayer approx-

imation, the numerical solution can

march through axially separated

regions without indicating any

separation-like behavior.

Character of

(6) Unconditional time-like (hyper-

bolic/parabolic) character and does

not require any sublayer-type app-

roximation.

Equations

Conditionally time-like character

and requires the use of a sublayer-type

approximation to render the equations

time-like in the sublayer region

(Schiffand Steger, 1979, and Vign-

eron et al., 1978).

Treatment of Shock Boundary

(7) Fully-implict shock prediction

which is fully iterative in nature

and coupled in the crossflow direc-

tion.

Involve various shock prediction

schemes which are not iterated

(Shanks et al., 1982, and Kaul and

Chaussee, 1983).

(8) Does not require the assumption

of inviscid flow behind the shock.

Noniterative implict shock treatments

typically assume that the flow behind

the shock is inviscid so that certain

characteristic-type relations can be

used to close the system. This is

clearly a deficient approach in the

nose-dominated region as well as in

regions of bow-shock interaction.
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(9) Does not involve any arbitrary

solution parameters to be provided

by the user.

Robustness

Involve a number of arbitrary

solution parameters which have to

be specified by the user and can have

substantial impact on the numerical

solution generated.

Grid-Refinement Capabilities

(I0) Good grid-refinement character- Use of fine grids in the near-wall

istics and very fine grids can be region typically cause solution

used in the near-wall region, instabilities.

Low-Reynolds-Number Flows

(11) Because of the inherent time-

like character, our PNS scheme can

accurately treat high-Mach-number

and low-Reynolds-number flows where

the subsonic sublayer spans over as

much as 50-60% of the computational

domain.

Under low-Reynolds-number conditions

sublayer region becomes large and

the sublayer approximation becomes

inadequate to suppress instabilities.

Computing Times

(12) Our 3-D PNS scheme uses a The use of Approximate Factorization

pseudo-unsteady approach (along with scheme and the restriction of small

its ability to take larger marching marching steps results in fairly large

steps) to provide accurate results overall computing times.

with overall computing times which

are comparable to or less than the

noniterative PNS schemes.

J.2. Validation and Comparison with Experimental Data

Over the years we have and also others have compared the predictions of our PNS

scheme with available flight as well as experimental data. Although such data have been

limited in access and availability, the indications have been that the agreement has been

very good. Data available in the open literature have been typically for relatively low

Mach number conditions (of the order of Mach 10), and even then not all data are for
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"clean" conditions that can be correctly simulated. Many times even if the data are

"clean" there are uncertainties associated with the correct determination of freestream

conditions and related unsteady freestream effects. This suggests that the experimental

data for code-validation purposes has to be carefully selected to make sure all effects are

accounted for, in order to correctly simulate the test conditions. Figures J.1 and J.2

show some results comparing the predictions of our PNS scheme with some good and

reliable experimental data.

Figure J. 1 shows the wall-pressure distribution for flow over a 10.5/7 deg spherically

blunt bicone configuration. The Mach number for this test was 6, and a perfect-gas

model was used for the numerical predictions. The experimental data were obtained in

the AEDC wind tunnel and have been taken form an AEDC report (AEDC-TR-80-14).

The agreement between the predicted and measured wall pressures is excellent.

Figure J.2 shows the predicted wall heat-transfer rates for the conditions of the

Cleary test cases (Cleary, 1969). The Cleary tests were conducted for several bluntness

ratios of a 15 deg cone. The results are shown for the largest bluntness ratio (nose radius

of 1.1 inch) under zero angle-of-attack conditions. This case was chosen because the

experimental data indicated the onset of transition to turbulent conditions for smaller

bluntness ratios and, also, at larger angles of attack. Figure J.2 shows the results of the

predictions for three different freestream total-pressure conditions (400psi, 1200psi and

1800psi). The numerical solutions assumed an isothermal wall at 540 Rankine and a

perfect-gas model along with fully-laminar flow conditions. The numerical results shown

in Fig. J.2 include the VSL solution for the blunt-body region as well as the PNS

afterbody solution. The PNS IDP data were generated at an axial location fo 4.5 nose

radii. These results clearly show the excellent agreement between the predicted and ex-

perimental wall heat-transfer rates.

The aforementioned results show that our PNS scheme does indeed produce accurate

aerothermodynamic predictions under hypersonic flow conditions. These code-

validation results fully support the accuracy, efficiency and stability claims of our PNS
scheme.
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Table I. Gas-phase reactions and catalytic

third-body efficiency matrix

Species

Catalytic Third Bodies

MI M2 M3 e-

0

02

NO

N

NO+

N2

25 1 20 0

9 1 1 0

1 1 20 0

i 0 20 0

0 0 0 1

2 2 1 0

Reaction (I) :

Reaction (2) :

Reaction (3) :

Reaction (4) :

Reaction (5) :

Reaction (6) :

Reaction (7) :

02 + M1 = 20 + M1

N2 + M2 = 2N + M2

N2 + N = 2N + N

NO + M3 = N + 0 + M3

NO+O =N +O2

N2 + 0 = N + NO

N + O = e- + NO+
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Table 2. Reaction rate data for the reactlng-alr mixture

(a) (a) (a) (b) (b)
R EXP(C0R) CIR C2R EXP(DOR) DIR

(b)

D2R

1 0.361E+19 59400.00 -i.00 0.301E+16 0.00

2 0.192E+18 113100.00 -0.50 0. I09E+17 0.00

3 0.415E+23 113100.00 -1.50 0.232E+22 0.00

4 0.397E+21 75600.00 -1.50 0.101E+21 0.00

5 0.318E+I0 19700.00 1.00 0.963E+12 3600.00

6 0.675E+14 37500.00 0.00 0.150E+14 0.00

7 0.903E+10 32400.00 0.50 0.180E+20 0.00

-0.50

-0.50

-1.50

-1.50

0.50

0.00

-1.00

(a) Forward Reaction Rate = k = [EXP(COR)] [(TK
fr

where 'irkis the temperature in degree Kelvin.

(b) Backward Reaction Rate = k = [EXP(DOR)] [('irk

br

where TK is the temperature in degree Kelvin.

)**C2R]

)**D2R]

EXP(-CIR/TK)

EXP(-DIR/TK)
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Table 3. Curve-flt coefficients for the species viscosities

Species
(a) (a) (a)

A B C

i i i

0

O2

NO

N

NO+

N2

0.20022000E-01 0.43094000E+00 -0.I1246000E+02

0.38271000E-01 0.21076000E-01 -0.95986000E+01

0.42501000E-01 -0.18874000E-01 -0.96197000E+01

0.85863000E-02 0.64630000E+00 -0.12581000E+02

0.42501000E-01 -0.18874000E-01 -0.96197000E+01

0.48349000E-01 -0.22485000E-01 -0.99827000E+01

(a) Species viscosity = Ln [_ (gm/cm-sec)] = C +(A LnT +B )LnT

i i i k i k

where T is the temperature in degree Kelvin.
k
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Table 4. Freestream conditions 3-D external-flow

calculations (Cases i, 2 and 3)

Quantity

Mach number

Altitude (kft)

Reynolds number

Pressure (Ib/ft 2)

Density (slug/ft')

Temperature (R)

Velocity (ft/sec)

Angle of attack (deg)

Wall temperature (R)

Wall boundary condition

20.000

125.000

5.313E+3

7.760E+0

1.017E-5

442.727

2.067E+4

5.000

2000.000

Fully-

Catalytic
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Table 5. Case parameters and computing times for 3-D external-

flow calculations (Cases I, 2 and 3)

Case

(a) (b) (c) (d) (e)

Grid IBM- Cray- Type Gas Order

x/Rn Used 3090 (Y/MP) of Model of

From-to NIxN2xN3 (m:s) (m:s) Grid Used Smoothing

Case la 0.8-50 46x30xSl 11:07 3:27 MBN PG 4-th

Case Ib 0.8-30 36x30x31 5:11 1:36 MBN PG 4-th

Case Ic 0.8-30 36x30x31 6:13 1:56 MBN PG 2-nd

Case Id 0.8-30 36x30x31 6:11 1:55 BN PG 2-nd

Case le 0.8-30 36x30x31 7:17 2:15 PB PG 2-nd

Case 2 0.8-30 36x30x31 5:57 1:51 MBN EQ 4-th

Case 3a 0.8-50 46x30xSl 24:30 7:38 MBN NEQ 4-th

Case 3b 0.8-50 46x30x31 15:00 4:40 MBN NEQ 4-th

(a) NI, N2 and N3 represent the number of grid points in the

streamwise, axis-normal and crossflow directions.

(b) Estimated computing times on IBM 3090 (model 200VF) with

VS-compiler and scalar LEVEL=3 optimization.

(c) Actual computing times on Cray-Y/MP with CFT77 compiler
and auto vectorization.

(d) MBN, BN and PB represent the modified body-normal, the

body-normal and the parabolic grid-generation schemes.

(e) PG, EQ and NEQ represent perfect-gas, equilibrium-air

and nonequilibrium-air gas models.
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Table 6. Freestream conditions 2-D internal-flow

calculations (Cases 4, 5 and 6)

Quantity

Mach number

Reynolds number (i/ft)

Pressure (Ib/ft 2)

Temperature (R)

Wall temperature (R)

Flow conditions

Case 4

6.70

2.33E+5

142.20

5332.89

2000.00

Laminar

Cases 5-6

i0.00

1.76E+6

50.00

500.00

I000.00

Laminar
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Table 7. Case parameters and computing times for internal-flow

calculations (Cases 4, 5 and 6)

(a) (b) (c)

Case Gas x/R Grid Cray-Y/MP

Model From-to N1 x N2 (sec)

Case 4a PG 0.0-50.0 212 x 150 59

Case 4b EQ 0.0-50.0 226 x 150 105

Case 4c NEQ 0.0-50.0 217 x 150 268

Case 5a PG 0.0-50.0 526 x 150 146

Case 5b EQ 0.0-50.0 526 x 150 223

Case 6a PG 0.0-i00.0 i011 x 150 343

Case 6b EQ 0.0-i00.0 962 x 150 380

(a) PG=perfect-g as, EQ=equillbrlum-alr and NEQ--nonequilibrium-
air gas models.

(b) N1 and N2 represent the number of grid points in the

streamwise and axis-normal directions.

(c) Actual computing times on Cray-Y/MP with CFT77

compiler and auto-vectorization.
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Fig. 4. Vehicle geometry for Cases l, 2 and 3
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x=30Rn

PARABOLIC

GRID

Alt.=125kft

Mach=20

5-deg angle

of attack
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Case I e
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Fig. 5. Results of the parabolic grid-generation scheme for Case I
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Fig. 6. Results of the body.-normal grid-generation scheme for Case I
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Fig. 7. Results of the modified body-normal grid-generation scheme for Case I
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Fig. 8. Results of the elliptic grid-generation scheme for Case I
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Fig. 9. The body-normal grid lines for the elliptic grid
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Fig. 10. Grid detail in the corner region for Case la at x= 30 Rn
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Fig. 11. Crossflow pressure contours for Case l a at x= 20 Rn
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Fig. 12. Crossflow pressure contours ror Case l a at x = 30 Rn
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Fig. 13. Crossflow pressure contours for Case la at x=40 Rn
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Fig. 14. Crossflow pressure contours for Case la at x = 50 Rn
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Fig. 15. Crossflow temperature contours for Case la at x = 30 Rn
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Fig. 16. Crossflow density contours for Case la at x = 30 Rn
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Fig. 17. Crossflow pressure contours for Case 2 at x = 30 Rn
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Fig. 18. Crossflow temperature contours for Case 2 at x= 30 Rn
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Fig. 19. Crossflow density contours for Case 2 at x= 30 Rn
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Fig. 20. Crossflow pressure contours for Case 3a at x = 20Rn
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Fig. 21. Crossflow pressure contours for Case 3a at x = 30Rn
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Fig. 22. Crossflow pressure contours for Case 3a at x = 40Rn
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Fig. 23. Crossflow pressure contours for Case 3a at x = 50Rn
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Fig. 24. Axial distribution of surface pressure for Case 3
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Fig. 25. Crossflow distribution of surface pressure for Case 3 at x = 50Rn

156



Z
n,"

-I--__

V J
_ A1t.:12Skft

F _ _ _ Mach=20
5 ° angle of

(51x30 grid) attack

0 Case 3b Nonequilibrium

(31x30 grid) air

PHI (0EO )
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Fig. 27. Axial distribution of surface heat-transfer rate for Case 3
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Fig. 28. Crossflow distribution of surface heat-transfer rate for for Case 3 at x = 50 Rn
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Fig. 29. Crossflow distribution of skin-friction for Case 3 at x= 50 Rn
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Fig. 30. Crossflow contours of electron number density for Case 3a at x = 20 Rn
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Fig. 31. Crossfiow contours of electron number density for Case 3a at x = 30Rn
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Fig. 32. Crossflow contours of electron number density for Case 3a at x= 40Rn
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Fig. 33. Crossflow contours of electron number density for Case 3a at x= 50Rn
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Fig. 34. Crossflow contours of O concentration for Case 3a at x= 50Rn
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Fig. 35. Crossflow contours of 02 concentration for Case 3a at x= 50Rn
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Fig. 36. Crossflow contours of N concentration for Case 3a at x = 50Rn
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Fig. 37. Crossflow contours of N2 concentration for Case 3a at x= 50Rn
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Fig. 38. Crossflow contours of NO concentration for Case 3a at x = 50Rn
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Fig. 39. Crossflow contours of NO + concentration for Case 3a at x = 50Rn
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Fig. 40. Gas-model effects on the axial distribution of surface pressure
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Fig. 41. Gas-model effects on the crossflow distribution of surface pressure at x= 30Rn

172'



Z
I:E

x.-
"I--

_.-L-I'r --

5" angle of attack

0

m

Perfect-gas

Equilibrium-air

Nonequilibrium-air

PHI (DEO )
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Fig. 43. Gas-model effects on the axial distribution of surface heat-transfer rate
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Fig. 44. Gas-model effects on the crossflow distribution of surface heat-transfer rate at
x = 30Rn
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Fig. 45. Gas-model effects on the crossflow distribution of skin-friction at x= 30Rn
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Fig. 53. Pressure profiles for Case 4 calculations
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